

# Air Quality Attribution Study Report

City Terrace East Los Angeles, California

July 11, 2023

Prepared for: County of Los Angeles

Prepared by: **Roux Associates, Inc.** 5150 E. Pacific Coast Highway, Suite 450 Long Beach, California, 90804

Environmental Consulting & Management +1.800.322.ROUX rouxinc.com

### **Table of Contents**

| Ex | ecutive Summary                                                                                                  | 1    |
|----|------------------------------------------------------------------------------------------------------------------|------|
| 1. | Introduction                                                                                                     | 3    |
|    | 1.1 Objectives                                                                                                   | 3    |
|    | 1.2 Scope of Work                                                                                                | 3    |
| 2. | Background                                                                                                       | 4    |
|    | 2.1 Study Area Description                                                                                       | 4    |
|    | 2.2 Previous Investigations                                                                                      | 5    |
| 3. | Attribution Study Implementation                                                                                 | 6    |
|    | 3.1 Pre-Field Activities                                                                                         |      |
|    | 3.1.1 Health and Safety Plan                                                                                     |      |
|    | 3.2 Peak/Minimum Traffic Study                                                                                   |      |
|    | 3.2.1 Areas of Investigation                                                                                     |      |
|    | 3.2.2 Sampling – Peak/Minimum Traffic Study                                                                      | 7    |
|    | 3.3 Lateral Variation Study                                                                                      | 8    |
|    | 3.3.1 Areas of Investigation                                                                                     | 8    |
|    | 3.3.2 Sampling – Lateral Variation Study                                                                         |      |
|    | 3.4 Gasoline Service Station / Fueling Facilities Study                                                          |      |
|    | 3.4.1 Access and Areas of Investigation                                                                          |      |
|    | 3.4.2 Sampling – Fueling Facilities Study                                                                        |      |
|    | 3.5 Sample Identification                                                                                        |      |
|    | 3.6 Field Sampling Quality Control                                                                               | . 11 |
| 4. | · · · · · · · · · · · · · · · · · · ·                                                                            |      |
|    | 4.1 Analytical Results – Peak/Minimum Traffic Study                                                              |      |
|    | 4.1.1 VOCs in Ambient/Outdoor Air                                                                                |      |
|    | 4.1.2 Methane in Ambient/Outdoor Air                                                                             |      |
|    | 4.2 Analytical Results – Lateral Variation Study                                                                 |      |
|    | 4.2.1 VOCs in Ambient/Outdoor Air                                                                                |      |
|    | 4.2.2 Methane in Ambient/Outdoor Air                                                                             |      |
|    | <ul> <li>4.3 Analytical Results – Fueling Facilities Study</li> <li>4.3.1 VOCs in Ambient/Outdoor Air</li> </ul> |      |
|    | 4.3.1 VOCS in Ambient/Outdoor Air                                                                                |      |
| _  |                                                                                                                  |      |
| 5. | Analysis and Conclusions.                                                                                        |      |
|    | 5.1 Peak/Minimum Traffic Study                                                                                   |      |
|    | 5.2 Lateral Variation Study                                                                                      |      |
|    | 5.3 Gasoline Service Station / Fueling Facilities Study                                                          |      |
|    | 5.4 Conclusions                                                                                                  |      |
| 6. | References                                                                                                       | .22  |

### **Tables**

- 1. Selected Volatile Organic Compounds (VOCs) Peak/Minimum Traffic Study
- 2. Selected Volatile Organic Compounds (VOCs) Lateral Variation Study
- 3. Selected Volatile Organic Compounds (VOCs) Fueling Facilities Study

### **Figures**

- 1. Site Location Map
- 2. Site and Vicinity
- 3. Air Quality Attribution Study Sample Locations
- 4. Peak/Minimum Traffic Study Benzene Concentrations
- 5. Lateral Variation Study Benzene Concentrations
- 6. Fueling Facilities Study Benzene Concentrations

### Appendices

- A. Analytical Laboratory Reports
- B. Student's t-Test Calculations

### **Executive Summary**

Roux Associates, Inc. (Roux) has prepared this Air Quality Attribution Study Report (Report) on behalf of the County of Los Angeles (County) to measure ambient/outdoor air quality in and around the City Terrace Community (Community) in East Los Angeles, Los Angeles County, California, and evaluate potential sources of certain volatile organic compounds (VOCs) and methane in indoor and outdoor air within the Community (Figure 1).

Ambient/outdoor air conditions were previously investigated in the Community by Roux in the City Terrace Soil Gas and Indoor Air Sampling Report (Roux, 2023) and by consultant Citadel EHS (Citadel), in their Sampling Data Report (Citadel, 2023). These reports document elevated concentrations of certain VOCs, particularly benzene in ambient/outdoor air. Concentrations of benzene in ambient/outdoor air detected were consistent throughout the Community and are comparable to benzene levels measured throughout the greater Los Angeles area. The relative consistency of the concentrations measured at different locations and the lack of significantly elevated concentrations "hot spots" in any particular area of the Community suggest that the benzene levels are not associated with a particular point source, either within the Community or in the immediate vicinity of the Community, prompting this attribution study to better understand the relationship between the ambient/outdoor air quality and potential sources of VOCs (primarily benzene) and methane.

The Community is situated in close proximity to two major freeways, two former landfills, and several gasoline service stations/diesel fueling facilities. An evaluation of each of these potential sources of VOCs and methane in the Community was addressed by this attribution investigation via three distinct studies with objectives and scopes as summarized below.

- **Peak/Minimum Traffic Study:** To evaluate the effect that traffic and variation of traffic volume have on VOC and methane in ambient/outdoor air within the Community, a total of 26 ambient/outdoor air samples were collected over three rounds of sampling at the following four locations: adjacent to 710 Freeway, adjacent to 10 Freeway, adjacent to 10/710 Freeway intersection, and within the Community.
- Lateral Variation Study: To evaluate the effect that distance from the former nearby landfills and freeways has on VOC and methane concentrations in ambient/outdoor air in the Community, a total of 32 ambient/outdoor air samples were collected over the course of three rounds of sampling at 10 locations. The sampled locations were adjacent to former Cogen Landfill, adjacent to former Blanchard Landfill, intersection of the 710 and 10 Freeways, 0.125 miles from nearest freeway, 0.25 miles from nearest freeway, 0.50 miles from nearest freeway, 0.75 miles from nearest freeway, 0.25 miles from the 10 Freeway, 0.5 miles from the 10 Freeway, and 0.75 miles from the 10 Freeway.
- Gasoline Service Station / Fueling Facilities Study: To evaluate the effect that nearby active fueling facilities/gasoline service stations have on VOCs and methane in ambient/outdoor air in the Community. A total of six ambient/outdoor air samples (five primary and one duplicate) were collected at the following five locations: four fueling sites and one location in the Community distant from the gas stations/fueling facilities.

As with previous investigations, VOCs and methane were detected throughout the Community in ambient/outdoor air. In particular, benzene exceeded residential screening levels (SLs) in nearly all of the

samples collected. While other VOCs and methane were detected in the samples, there were far fewer screening level exceedances, and detections were typically isolated and not indicative of a significant release. A summary of the results and conclusions is provided below.

Benzene: Benzene was detected in all of the ambient/outdoor air samples collected and analyzed in the study, with all concentrations exceeding the residential SL of 0.097 µg/m3 (DTSC, rev. 2022), indicating widespread and consistent distribution of benzene throughout the Community. The range of concentrations were consistent with, or lower than, established background conditions throughout the greater Los Angeles area. These concentrations are primarily from vehicle exhaust (typical daily benzene concentrations in Los Angeles Air Basin ambient/outdoor air range from 0.73 to 1.25 µg/m³, with a Basin-wide average of 0.92 µg/m³).<sup>1</sup>

Benzene concentrations are generally elevated in close proximity to freeways. Increased traffic volume is correlated with higher concentrations of benzene in ambient/outdoor air. Locations in close proximity to a freeway (within 500 feet) have modestly elevated benzene concentrations compared to the wider Los Angeles ambient/outdoor air. To the contrary, County fueling facilities, nearby privately operated gasoline service stations, and the downwind former landfills do not have any measurable effect on benzene concentrations within the Community.

- Other VOCs: Along with benzene, the other BTEX compounds (toluene, ethylbenzene, and xylenes) commonly associated with petroleum products were detected in all ambient/outdoor air samples collected, but at concentrations lower than the corresponding SLs. Three additional VOCs, chloroform, methylene chloride, and trichloroethene (TCE), were detected in exceedance of one or more applicable SL in ambient/outdoor air samples over the course of the investigation. However, these analytes were only detected in a small subset of the samples; they were not consistently detected throughout the investigation and are thus not considered to be contaminants of concern in ambient/outdoor air.
- **Methane:** Methane was detected in the majority of samples, but below the methane Lower Explosive Limit (LEL) of 50,000 parts per million by volume (ppmv) by multiple orders of magnitude and is thus not considered to be a contaminant of concern in ambient/outdoor air.

<sup>&</sup>lt;sup>1</sup> <u>http://www.aqmd.gov/home/air-quality/air-quality-studies/health-studies/mates-v/mates-v-air-monitoring-dashboard</u>

# 1. Introduction

Roux Associates, Inc. (Roux) has prepared this *Air Quality Attribution Study Report* (Report) on behalf of the County of Los Angeles (County) to document an evaluation of the ambient/outdoor air quality in and around the City Terrace Community (Community) in East Los Angeles, Los Angeles County, California (Figure 1). The evaluation included sampling and analysis of ambient/outdoor air associated with nearby features including interstate freeways, landfills, and fueling facilities. Ambient/outdoor air conditions were previously investigated in the Community by Roux, as described in the *City Terrace Soil Gas and Indoor Air Sampling Report* (Roux, 2023) and by consultant Citadel EHS (Citadel), as presented in their City Terrace/Former Cogen Landfill Property *Sampling Data Report* (Citadel, 2023). Elevated detections of certain volatile organic compounds (VOCs), particularly benzene, were identified in ambient/outdoor air.

The Community is in close proximity to two major freeways, two former landfills, and several gasoline service stations/diesel fueling facilities. Freeways are known to be a source of VOCs, particularly benzene, toluene, ethylbenzene, and xylenes (BTEX compounds), due to fuel exhaust from vehicles, and historical landfills have the potential to contribute methane and VOCs to ambient/outdoor air conditions as a result of the natural attenuation of organic waste. Gasoline service stations/diesel fueling facilities are also known to be a source of VOCs due to emissions of vapors during fuel dispensing, as well as the presence of underground storage tanks (USTs) and/or aboveground storage tanks (ASTs) that contain the petroleum products.

#### **1.1 Objectives**

Due to elevated detections in previous investigations of VOCs, particularly benzene, the County contracted Roux to investigate ambient/outdoor air conditions in proximity to potential sources of VOCs (primarily benzene) and methane within the Community. The attribution investigation documented in this report included three distinct studies with objectives as summarized below:

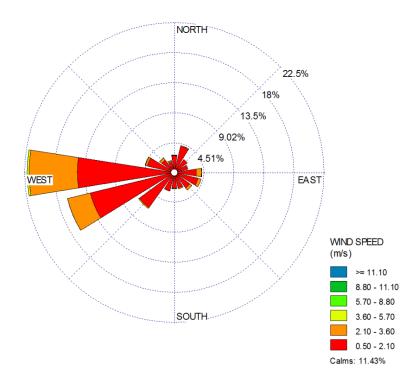
- **Peak/Minimum Traffic Study:** Evaluate the effect that traffic and variation of traffic volume have on VOC and methane impacts to ambient/outdoor air within the Community;
- Lateral Variation Study: Evaluate the effect that horizontal distance from the former Cogen Landfill and nearby freeways has on VOC and methane impacts to ambient/outdoor air within the Community; and,
- **Gasoline Service Station / Fueling Facilities Study:** Evaluate the effect that nearby active fueling facilities/gasoline service stations have on VOC and methane impacts to ambient/outdoor air within the Community.

### **1.2 Scope of Work**

The scope of work completed by Roux for this investigation is summarized below. Investigation activities included the collection of limited-duration ambient/outdoor air samples as well as 24-hour ambient/outdoor air samples to evaluate the objectives described above. The areas of investigation and sampling locations within the vicinity of the Community are shown in Figure 3.

Roux collected a total of 63 ambient/outdoor air samples (57 primary and six duplicate samples) as part of this investigation. These three data sets were used to evaluate the ambient/outdoor air quality (VOCs and methane) during peak and minimum traffic periods, with distance from the nearby freeways and landfill, and in the vicinity of local fueling facilities.

# 2. Background


### 2.1 Study Area Description

For the purposes of this Attribution Study Report, the Study Area is considered to be the residential portion of the Community within approximately 1,000 feet of the former Cogen Landfill as well as the surrounding area generally bound by the San Bernardino (I-10) Freeway to the north and the Long Beach (I-710) Freeway to the east (Figures 1 and 2).

The Community is an unincorporated community of East Los Angeles within Los Angeles County, California. The Community is bounded to the north by East City Terrace Drive, to the west by North Eastern Avenue, to the south by Hauck Street, and to the east by Rollins Drive/Sheriff Road. The Study Area includes sampling locations along public rights of way, along I-10 / I-710 on-ramps, and on County property between the eastern boundary of City Terrace and the I-710 Freeway (Figure 3).

Two historical landfills, the former Cogen Landfill and the former Blanchard Landfill, both of which were privately owned and operated by the BKK Corporation, ceased operations in 1958, and are located to the southeast of the Community.

The prevailing wind direction within the study area has been documented to be blowing west to east. This is supported through data collected from the USC/Downtown weather station by the South Coast Air Quality Management District (SCAQMD) and represented by wind rose reproduced below. Where appropriate, the studies conducted herein were undertaken only when the forecast wind direction was aligned with the prevailing direction (west to east) or when conditions were considered to be calm (i.e., no wind).



### 2.2 **Previous Investigations**

In 2021, soil gas sampling and ambient/outdoor air sampling were conducted within the Community by Citadel at the direction of the County. A total of 67 soil gas samples and 26 ambient/outdoor air samples were collected in the vicinity of 27 residential properties and two additional locations in an alleyway. These samples were analyzed for the presence of VOCs and methane. The results of the investigation identified elevated concentrations of VOCs, particularly benzene.

In February and March 2023, Roux performed an additional assessment of soil gas, indoor air, and ambient/outdoor air in the Community. The assessment was performed at all 23 of the residences included in the earlier Citadel investigation that agreed to have additional testing performed (Roux, 2023). Numerous VOCs and methane were detected across the Community in soil gas, indoor air, and ambient/outdoor air. While VOCs other than benzene were detected (along with methane), there were far fewer screening level exceedances, and detections were typically isolated and not indicative of a broad release across the community. In contrast, benzene exceeded residential screening levels (SLs) for indoor air in virtually all of the samples collected.

Concentrations of benzene in ambient/outdoor air were consistent across the Community, ranging from 0.40 to 1.1 micrograms per cubic meter ( $\mu$ g/m<sup>3</sup>), in line with benzene levels experienced throughout the greater Los Angeles area.<sup>2</sup> The spatial distribution and lack of significantly elevated concentrations in any particular area of the Community suggest that the benzene impacts are not associated with a particular point source, either within the Community or immediate vicinity, prompting this attribution study to better understand the relationship between the ambient/outdoor air quality, the former Cogen and Blanchard Landfills, the nearby interstate freeways, and the various nearby gasoline service stations/fueling facilities.

<sup>&</sup>lt;sup>2</sup> Typical daily benzene concentrations in Los Angeles Air Basin ambient/outdoor air range from 0.73 to 1.25 μg/m<sup>3</sup>, with a Basin-wide average of 0.92 μg/m<sup>3</sup> (2018-2019) <u>http://www.aqmd.gov/home/air-quality/air-quality-studies/health-studies/mates-v/mates-v/air-monitoring-dashboard</u>

# 3. Attribution Study Implementation

This attribution study was performed on behalf of the County to investigate the effect that traffic and variation of traffic volume, distance from the nearby freeways and landfill properties, and nearby active fueling facilities have on ambient/outdoor air quality, specifically VOCs and methane, in the vicinity of the Community. The field activities were completed between April 7 and May 11, 2023. All work described in this report was conducted under the direction of a California-registered Professional Civil Engineer.

#### 3.1 **Pre-Field Activities**

No subsurface work was carried out during the implementation of this fieldwork; thus, no permits were required. Where necessary, access to sampling locations on County property was coordinated with Los Angeles County Fleet Management and the Los Angeles County Fire Department.

#### 3.1.1 Health and Safety Plan

Prior to the start of field activities, Roux reviewed and updated the Site-specific HASP dated February 17, 2023, to ensure worker safety (Roux, 2023). All fieldwork associated with the investigation was performed in accordance with the Site-specific HASP. The HASP identified the potential physical and chemical hazards at the Site that could present a potential threat to workers during the authorized scope of work. The HASP also identified best practices related to the reduction of risk due to the COVID-19 virus. Field workers acknowledged their familiarity with all safety procedures and indicated their intent to follow the HASP by signing the HASP after the tailgate safety meeting, which took place at the beginning of each field day.

#### 3.2 Peak/Minimum Traffic Study

To evaluate the effects of traffic and variation of traffic volume on VOCs and methane in ambient/outdoor air, Roux collected limited-duration (approximately three-hour) ambient/outdoor air samples during periods of peak traffic flow (between 07:00 and 10:00 a.m.) and minimum traffic flow (between 01:00 and 04:00 a.m.) at four sample locations (shown in Figure 3).

The four sampling locations were as:

- Adjacent to the 710 Freeway,
- Adjacent to the 10 Freeway,
- At the intersection of the 710 and 10 Freeways, and
- At a location central to the Community.

To aggregate varying traffic patterns, Roux conducted three rounds of sampling on (non-repeated) weekdays on April 7, April 12, April 18, and April 26, 2023 (see Section 3.2.2 for details). Sampling and analysis procedures are discussed in the following sections.

#### **3.2.1 Areas of Investigation**

The Peak/Minimum Traffic Study was conducted at four locations in the public right of way (as shown in Figure 3).

|                                                  | Areas                                                   | of Investigation – Pe      | eak/Minimum Traffic Study                                                                                                                                                                   |
|--------------------------------------------------|---------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location<br>Description                          | Approximate<br>Location                                 | Approximate<br>Coordinates | Associated Sample IDs                                                                                                                                                                       |
| Adjacent to<br>710<br>Freeway                    | 710 Shoulder of I- 34.05762<br>710 710 NB Exit 118.164  | 34.057627, -<br>118.164829 | AA-710-20230407-0058<br>AA-710-20230412-0105<br>AA-710-20230418-0104<br>AA-710-20230407-0700<br>AA-710-20230407-0700-D<br>AA-710-20230418-0707                                              |
| Adjacent to<br>10 Freeway                        | 3912 Perry<br>Street, Los<br>Angeles, CA                | 34.056696, -<br>118.181205 | AA-710-20230426-0700<br>AA-10-20230407-0108<br>AA-10-20230412-0110<br>AA-10-20230418-0105<br>AA-10-20230407-0705<br>AA-10-20230418-0704<br>AA-10-20230426-0645                              |
| Adjacent to<br>10/710<br>Freeway<br>Intersection | North<br>Shoulder of I-<br>710 NB<br>Ramp to I-10<br>WB | 34.061136, -<br>118.163911 | AA-710/10-20230425-0043<br>AA-710/10-20230412-0100<br>AA-710/10-20230418-0057<br>AA-710/10-20230418-0057-D<br>AA-710/10-20230407-0651<br>AA-710/10-20230418-0656<br>AA-710/10-20230426-0705 |
| Community                                        | 4350 Hauck<br>Street, Los<br>Angeles, CA                | 34.054414, -<br>118.170938 | AA-CT-20230407-0100<br>AA-CT-20230412-0055<br>AA-CT-20230418-0055<br>AA-CT-20230407-0655<br>AA-CT-20230418-0655<br>AA-CT-20230426-0650                                                      |

#### 3.2.2 Sampling – Peak/Minimum Traffic Study

During this portion of the study, Roux collected a total of 26 ambient/outdoor air samples (24 primary and two duplicate). Samples were collected in individually certified six-liter SUMMA® canisters with three-hour flow controllers at a height of approximately four to six feet above the ground at locations in the public right of way.

On April 12, 2023, sample collection during peak traffic hours was prevented due to defective flow controllers. Replacement samples were collected during peak traffic hours on April 26.

Samples were labeled, logged on a chain of custody form, and transported to a California certified laboratory, Pace Analytical Environmental Sciences, for analysis. The samples were analyzed for VOCs using USEPA Method TO-15 (SIM) and methane using ASTM Method D1946.

### 3.3 Lateral Variation Study

The lateral variation portion of the study was intended to evaluate the relationship between VOC and methane impacts to ambient/outdoor air, prevailing wind direction, and lateral distance from potential sources. The potential sources consisted of the I-710 Freeway, the I-10 Freeway, the former Cogen Landfill, and the former Blanchard Landfill. This portion of the study was implemented across three 24-hour sampling events initiated on April 17, April 19, and April 27, 2023.

#### 3.3.1 Areas of Investigation

The lateral variation portion of the study was conducted along two distinct (but intersecting) transects (Figure 5).

The first transect was positioned in alignment with the prevailing wind direction (Prevailing Wind Sampling Transect). Collection of 24-hour ambient/outdoor air samples was carried out at four sample locations spaced 0.25 miles apart along a west-east transect (the direction of prevailing wind) starting at the I-10 Freeway to the west and ending within the Community vicinity to the east. Concurrent 24-hour ambient/outdoor air samples were also collected adjacent to the former Cogen Landfill and former Blanchard Landfill to determine any possible influence from the former solid waste facilities. This portion of the study was implemented on days with neutral wind conditions or where wind direction was forecast to be in the prevailing direction (west to east), consistent with normal conditions.

The second transect was positioned to evaluate VOC and methane impacts in ambient/outdoor air against overall lateral distance from the nearby freeways (Separation Sampling Transect). Collection of 24-hour ambient/outdoor air samples was carried out at five sample locations: one at the I-10 / I-710 interchange and then at approximately 0.125, 0.25, 0.5, and 0.75 miles from any freeway.

It is noted that a reasonable distance to consider as the near source zone for traffic impacts is thought to be approximately 500 meters (0.3 miles)<sup>3,4,5</sup>. This is consistent with the USEPA guidance on the influence of roadways on air quality, which references 500 to 600 feet <sup>6</sup> (0.095 to 0.114 miles) as a reasonable distance to observe influence on air quality for particulates (non-particulates, including VOCs and methane, have the potential to impact a greater distance due to their gaseous state).

An overview of the Lateral Variation Study sampling locations and sample IDs is illustrated in Figure 5 and provided in the table below.

<sup>&</sup>lt;sup>3</sup> M Johnson, V Asakov, J S Touma, S Mukerjee, H Ozkaynak, *Evaluation of Land-Use Regression Models Used to Predict Air Quality Concentrations in an Urban Area*, Atmospheric Environment, September 2010.

<sup>&</sup>lt;sup>4</sup> J Kim, S Smorodinsky, M Lipsett, B C Singer, A T Hodgson, B Ostro, *Traffic-related Air Pollution near Busy Roads, The East Bay Children's Respiratory Health Study*, American Journal of Respiratory and Critical Care Medicine, May 2004.

<sup>&</sup>lt;sup>5</sup> Y Zhu , W Hinds , S Kim, C Sioutas, *Concentration and Size Distribution of Ultrafine Particles Near a Major Highway*, Journal of the Air & Waste Management Association, 52:9, 1032-1042, DOI: 10.1080/10473289.2002.10470842, September 2002.

<sup>&</sup>lt;sup>6</sup> *Near Roadway Air Pollution and Health: Frequently Asked Questions*, Office of Transportation and Air Quality, August 2014

|                                           | Areas of Investigat                                                          | ion – Lateral Variation Stu | dy                                                                                         |  |  |  |
|-------------------------------------------|------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------|--|--|--|
| Location Description                      | Approximate Location                                                         | Approximate Coordinates     | Associated Sample IDs                                                                      |  |  |  |
|                                           | Separation                                                                   | Sampling Transect           |                                                                                            |  |  |  |
| Adjacent to former<br>Cogen Landfill      | 1198 Sheriff Road,<br>Monterey Park                                          | 34.055052, -118.168696      | AA-CL-20230417<br>AA-CL-20230419<br>AA-CL-20230427                                         |  |  |  |
| Adjacent to former<br>Blanchard Landfill  | 1158 Sheriff Road,<br>Monterey Park                                          | 34.050492, -118.169277      | AA-BL-20230417<br>AA-BL-20230419<br>AA-BL-20230427                                         |  |  |  |
| 710/10 Intersection                       | South shoulder of on<br>ramp from West<br>Ramona Blvd to I-710<br>Southbound | 34.060392, -118.166019      | AA-710/10-20230417<br>AA-710/10-20230419<br>AA-710/10-20230427<br>AA-710/10-20230427-D     |  |  |  |
| 0.125 miles from<br>Nearest Freeway       | ,                                                                            |                             | AA-0.125MI-20230417<br>AA-0.125MI-20230417-D<br>AA-0.125MI-20230419<br>AA-0.125MI-20230427 |  |  |  |
| 0.25 miles from<br>Nearest Freeway        | 1452 Volney Drive, Los<br>Angeles                                            | 34.057115, -118.169291      | AA-0.25MI-20230417<br>AA-0.25MI-20230419<br>AA-0.25MI-20230427                             |  |  |  |
| 0.50 miles from<br>Nearest Freeway        | 1126 North Hazard<br>Avenue, Los Angeles                                     | 34.050260, -118.177912      | AA-0.5MI-20230417<br>AA-0.5MI-20230419<br>AA-0.5MI-20230427                                |  |  |  |
| 0.75 miles from<br>Nearest Freeway        | 3822 Folsom Street,<br>Los Angeles                                           | 34.044893, -118.184159      | AA-0.75MI-20230417<br>AA-0.75MI-20230419<br>AA-0.75MI-20230419-D<br>AA-0.75MI-20230427     |  |  |  |
|                                           | Prevailing W                                                                 | ind Sampling Transect       |                                                                                            |  |  |  |
| 0.25 miles from 10<br>Freeway             | 3828 City Terrace Drive,<br>Los Angeles                                      | 34.055647, -118.182434      | AA-PW1-20230417*<br>AA-PW1-20230419<br>AA-PW1-20230427                                     |  |  |  |
| 0.5 miles from 10<br>Freeway              | 4026 City Terrace Drive,<br>Los Angeles                                      | 34.055504, -118.178360      | AA-PW2-20230417<br>AA-PW2-20230419<br>AA-PW2-20230427                                      |  |  |  |
| 0.75 miles from 10<br>Freeway Los Angeles |                                                                              | 34.056270, -118.174257      | AA-PW3-20230417<br>AA-PW3-20230419<br>AA-PW3-20230427                                      |  |  |  |

\* AA-PW1-20230417 could not be collected due to SUMMA canister theft during deployment.

#### 3.3.2 Sampling – Lateral Variation Study

Over the course of the Lateral Variation Study, Roux collected a total of 32 ambient/outdoor air samples (29 primary and three duplicate). Samples were collected and analyzed using the same methods described in Section 3.2.2.

#### 3.4 Gasoline Service Station / Fueling Facilities Study

To evaluate the effects of nearby gasoline service stations/fueling facilities (including USTs/ASTs) on VOCs and methane in ambient/outdoor air, Roux collected 24-hour ambient/outdoor air samples at four active petroleum product fueling locations. For comparison, a 24-hour ambient/outdoor air sample was also collected at a location within the Community not in the vicinity of the gasoline service stations for comparison, concurrent with the fueling facility samples. Sample locations are shown in Figure 6. Sampling and analysis procedures are discussed in the following sections.

#### **3.4.1 Access and Areas of Investigation**

| A                           | Areas of Investigati         | on – Fueling Facilities St | tudy                                     |  |  |  |  |  |  |  |  |  |  |
|-----------------------------|------------------------------|----------------------------|------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Location Description        | Approximate<br>Location      | Approximate<br>Coordinates | Associated Sample IDs                    |  |  |  |  |  |  |  |  |  |  |
| Fueling Facilities          |                              |                            |                                          |  |  |  |  |  |  |  |  |  |  |
| Fueling Site A (UST-A)      | 1600 North<br>Eastern Avenue | 34.060074, -118.172971     | AA-UST-A-20230511                        |  |  |  |  |  |  |  |  |  |  |
| Fueling Site B (UST-B)      | 1535 North<br>Eastern Avenue | 34.059105, -118.172852     | AA-UST-B-20230511                        |  |  |  |  |  |  |  |  |  |  |
| Fueling Site C (UST-C)      | 1104 North<br>Eastern Avenue | 34.049719, -118.171566     | AA-UST-C-20230511<br>AA-UST-C-20230511-D |  |  |  |  |  |  |  |  |  |  |
| Fueling Site D (UST-D)      | 1108 Sheriff Road            | 34.050054, -118.170863     | AA-UST-D-20230511                        |  |  |  |  |  |  |  |  |  |  |
| Community Comparison Sample |                              |                            |                                          |  |  |  |  |  |  |  |  |  |  |
| Community                   | 4342-4398 Hauck<br>Street    | 34.054567, -118.170549     | AA-CT-20230511                           |  |  |  |  |  |  |  |  |  |  |

The investigation was conducted at five sample locations (shown in Figure 6).

Fueling Site A and Fueling Site B are self-service gasoline service stations operated by Mobil and Chevron, respectively. Fueling Site C is the location of a self-service fueling facility operated by Los Angeles County Fleet Management, and it is the primary fueling facility for the Sheriff's Department. Fueling Sites A, B, and C are suspected to operate at least one gasoline UST. Fueling Site D is the location of a single self-service diesel fuel dispenser and associated AST operated by Los Angeles County Fire Station #1. Each of these fueling facilities are active fueling operations with continuous daily use.

#### 3.4.2 Sampling – Fueling Facilities Study

Over the course of this phase of the investigation, Roux collected a total of six ambient/outdoor air samples (five primary and one duplicate). Samples were collected and analyzed using the same methods described in Section 3.2.2.

### 3.5 Sample Identification

Samples collected were designated with a unique identifier using the following format:



The above example represents a duplicate ambient/outdoor air sample collected at 07:00 a.m. from the Peak/Minimum Traffic Study at the sample location adjacent to the 710 Freeway. Ambient/outdoor air samples collected for the Lateral Variation Study and Fueling Facilities Study omit the sample deployment time.

#### 3.6 Field Sampling Quality Control

Field quality assurance/quality control samples were collected during the investigation to assess whether reported concentrations of chemicals identified through analytical testing were of acceptable quality. Six ambient/outdoor air sample field duplicates were collected to check for sampling and analytical precision. The six duplicate ambient/outdoor air samples were collected, labeled (all duplicate sample IDs end with a "-D" designation), and stored in the same manner as the primary samples. The duplicates were analyzed for the same analytes according to the same methods as the primary samples.

No significant anomalies were observed between primary and duplicate samples with respect to VOCs. The average relative percentage difference (RPD) between primary and duplicate ambient/outdoor air sample pairs for benzene was 3.4%. All primary and duplicate sample pairs had an RPD below 50% for benzene, in accordance with USEPA guidance (USEPA, 2020).

# 4. Analytical Results

Ambient/outdoor air results were evaluated in the context of the following screening levels (SLs), where applicable:

- California Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Notes 3 and 5 Screening Levels (SLs) for Residential Air (DTSC, rev. 2022)
- If DTSC HERO HHRA SLs were unavailable for a given chemical, United States Environmental Protection Agency (USEPA) Regional Screening Levels (RSLs) for Residential Air THQ = 1.0 (USEPA, rev. 2022) were used for comparison
- If neither DTSC SLs nor USEPA RSLs were available for a given chemical, San Francisco Bay Regional Water Quality Control Board (SFBRWQCB) Environmental Screening Levels (ESLs) for Indoor Air (SFBRWQCB, rev. 2019) were used for comparison.
- Methane results are evaluated according to the Lower Explosive Limit (LEL) for methane (50,000 parts per million by volume [ppmv]).<sup>7</sup>

The following section summarizes the laboratory analytical results of the ambient/outdoor air samples. Full copies of the laboratory reports are provided in Appendix A.

#### 4.1 Analytical Results – Peak/Minimum Traffic Study

#### 4.1.1 VOCs in Ambient/Outdoor Air

A total of 26 ambient/outdoor air samples were collected during the Peak/Minimum Traffic Study and were analyzed for VOCs using USEPA Method TO-15 SIM. A total of 13 VOC analytes were detected above the laboratory practical quantitation limit (PQL) in one or more of the ambient/outdoor air samples. Certain VOCs (acetone, dichlorodifluoromethane, trichlorofluoromethane, 1,1,2-trichloro-1,2,2-trifluoromethane, and BTEX compounds) were detected in all of the samples analyzed during the study (Table 1).

Two of the 13 analytes detected, benzene and methylene chloride, were reported at concentrations that exceeded their corresponding SLs for residential air. A summary of these detections is presented below:

- Benzene was detected in exceedance of the laboratory PQL in all 25 of the ambient/outdoor air samples at concentrations ranging from 0.33 μg/m<sup>3</sup> (AA-710-20230412-0105) to 1.9 μg/m<sup>3</sup> (AA-710/10-20230407-0651). All 25 detections exceeded the DTSC HERO HHRA Note 3 SL of 0.097 μg/m<sup>3</sup>.
- Methylene chloride was detected in exceedance of the laboratory PQL in two of the ambient/outdoor air samples at concentrations ranging from 4.9 μg/m<sup>3</sup> (AA-710/10-20230426-0705) to 8.3 μg/m<sup>3</sup> (AA-CT-20230418-0655). These two detections exceeded the DTSC HERO HHRA Note 3 SL of 1.0 μg/m<sup>3</sup>.

<sup>&</sup>lt;sup>7</sup> Methane is non-toxic and creates no hazard when inhaled in limited quantities; however, if large quantities of natural gas or methane is allowed to displace air, lack of oxygen may result in suffocation. Methane concentrations identified throughout this study are several orders of magnitude below the levels that could cause this condition.

#### 4.1.2 Methane in Ambient/Outdoor Air

Methane was detected in all 26 ambient/outdoor air samples in exceedance of the laboratory PQL, with concentrations ranging from 1.8 ppmv (AA-10-20230418-0105) to 67 ppmv (AA-710/10-20230418-0057-D). None of the 26 methane detections exceeded the LEL of methane at 50,000 ppmv (Table 1).

#### 4.2 Analytical Results – Lateral Variation Study

#### 4.2.1 VOCs in Ambient/Outdoor Air

A total of 32 ambient/outdoor air samples were collected during the Lateral Variation Study and were analyzed for VOCs using USEPA Method TO-15 SIM. A total of 14 VOC analytes were detected above the laboratory PQL in one or more of the ambient/outdoor air samples. Certain VOCs (acetone, dichlorodifluoromethane, 1,1-difluoroethane [1,1-DFA], trichlorofluoromethane, 1,1,2-trichloro-1,2,2-trifluoromethane, and BTEX compounds) were detected in all of the samples analyzed during the study (Table 2).

Three of the 14 analytes, benzene, chloroform, and trichloroethene, were reported at concentrations that exceeded their corresponding SLs for residential air. A summary of these results is presented below:

- Benzene was detected in exceedance of the laboratory PQL in 32 of the 32 ambient/outdoor air samples at concentrations ranging from 0.45 μg/m<sup>3</sup> (AA-CL-20230417) to 1.8 μg/m<sup>3</sup> (AA-PW1-20230427). All 32 detections exceeded the DTSC HERO HHRA Note 3 SL of 0.097 μg/m<sup>3</sup>.
- Chloroform was detected in exceedance of the laboratory PQL in two of the 32 ambient/outdoor air samples at concentrations ranging from 0.27 μg/m<sup>3</sup> (AA-CL-20230417) to 0.31 μg/m<sup>3</sup> (AA-0.125MI-20230417). Both detections exceeded the USEPA RSL for Residential Air (THQ = 1.0) of 0.12 μg/m<sup>3</sup>.
- Trichloroethene (TCE) was detected in exceedance of the laboratory PQL in 11 of the 25 ambient/outdoor air samples at concentrations ranging from 0.57 µg/m<sup>3</sup> (AA-0.75MI-20230419-D) to 4.5 µg/m<sup>3</sup> (AA-0.75MI-20230419). Nine of the 25 detections exceeded the DTSC HERO HHRA Note 5 Screening Level for Residential Air for Trichloroethylene (August 2014) of 3.0 µg/m<sup>3</sup>.

The two chloroform detections were isolated to AA-CL-20230417 and AA-0.125MI-20230417 and are not indicative of a widespread contaminant of concern. TCE detections occurred in all samples gathered on April 19, 2023 as part of this portion of the investigation and appear to reflect some activity specific to that day and does not appear to represent an ongoing or widespread contaminant of concern. No detections were reported in other sampling rounds as part of this portion of the investigation.

#### 4.2.2 Methane in Ambient/Outdoor Air

Methane was detected in 25 of the 32 ambient/outdoor air samples in exceedance of the laboratory PQL, with concentrations ranging from 1.9 ppmv (AA-BL-20230417 and AA-0.5MI-20230417) to 80 ppmv (AA-0.5MI-20230417). None of the 25 methane detections exceeded the LEL of methane at 50,000 ppmv (Table 2).

### 4.3 Analytical Results – Fueling Facilities Study

#### 4.3.1 VOCs in Ambient/Outdoor Air

A total of six ambient/outdoor air samples were collected during the gasoline service station/fueling facilities study and were analyzed for VOCs using USEPA Method TO-15 SIM. A total of 11 VOC analytes were detected above the PQL in one or more ambient/outdoor air samples. Certain VOCs (acetone, dichlorodifluoromethane, 1,1-DFA, trichlorofluoromethane, 1,1,2-trichloro-1,2,2-trifluoromethane, and BTEX compounds) were detected in all of the samples analyzed during the study (Table 3).

One of the 11 analytes, only benzene was reported at concentrations exceeding the corresponding SL for residential air. Benzene was detected in exceedance of the laboratory PQL in all six of the six ambient/outdoor air samples at concentrations ranging from 0.59  $\mu$ g/m<sup>3</sup> (AA-CT-20230511) to 1.2  $\mu$ g/m<sup>3</sup> (AA-UST-A-20230511 and AA-UST-B-20230511). All six detections exceeded the DTSC HERO HHRA Note 3 SL of 0.097  $\mu$ g/m<sup>3</sup>.

#### 4.3.2 Methane in Ambient/Outdoor Air

Methane was detected in all six of the ambient/outdoor air samples in exceedance of the laboratory PQL, with concentrations ranging from 2.9 J ppmv (AA-UST-A-20230511) to 4.0 ppmv (AA-CT-20230511). None of the six methane detections exceeded the LEL of methane at 50,000 ppmv (Table 3).

### 5. Analysis and Conclusions

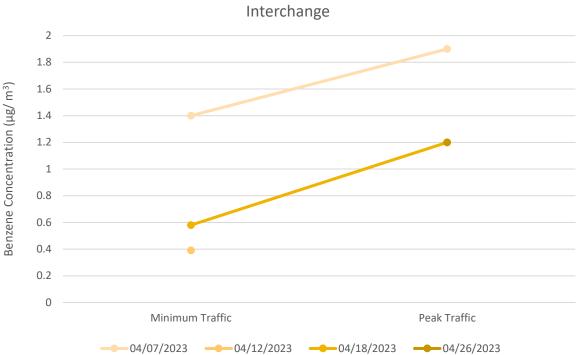
As expected, benzene was detected in all 57 of the ambient/outdoor air samples collected and analyzed during this study, with all concentrations exceeding the DTSC residential SL for residential air, indicating widespread and consistent distribution of benzene throughout the Study Area. Although all benzene concentrations in ambient/outdoor air exceeded the SL, the range of concentrations were consistent with, or lower than, established background conditions throughout the greater Los Angeles area (typical daily benzene concentrations in Los Angeles Air Basin ambient/outdoor air range from 0.73 to 1.25  $\mu$ g/m<sup>3</sup>, with a Basin-wide average of 0.92  $\mu$ g/m<sup>3</sup>).<sup>8</sup> The distribution of benzene in ambient/outdoor air for each phase of the study is illustrated in Figures 4, 5, and 6.

Throughout this section, Roux performed a series of statistical analyses using the Student's t-Test. This statistical test is commonly used to determine whether mean average values between data sets are significantly different from one another. Considering the limited size of the data sets, Roux has used a p-value of 0.01 as a conservative measure of statistical significance. If the calculated Student's t-Test p-value is less than 0.01, the data sets are considered to be significantly different from one another. Overall, benzene concentrations in ambient/outdoor air across the City Terrace Community (for all data collected by Roux in 2023; average =  $0.65 \mu g/m^3$ ) are significantly different (lower) than the greater Los Angeles Air Basin in 2018/2019 (average =  $0.92 \mu g/m^3$ ), with a p-value of 0.0016.

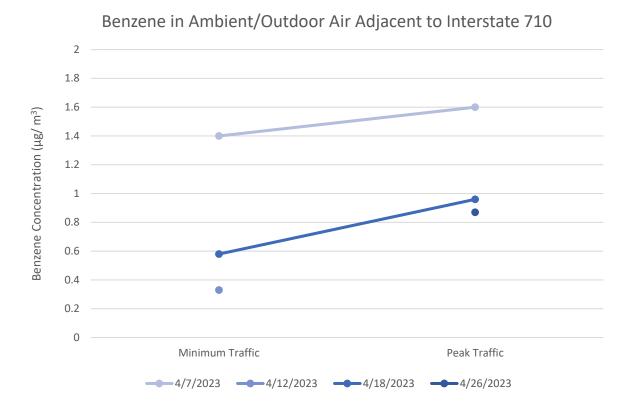
Methane was detected above the laboratory PQL in the majority of samples, but below the methane LEL by multiple orders of magnitude and is thus not considered to be a contaminant of concern in ambient/outdoor air. Along with benzene, the other BTEX compounds (toluene, ethylbenzene, and xylenes) were detected in all ambient/outdoor air samples collected, albeit at concentrations lower than the corresponding SLs. Three additional VOCs, chloroform, methylene chloride, and TCE, were detected in exceedance of one or more applicable SL in ambient/outdoor air samples over the course of the investigation. However, these analytes were only detected in a small subset of the samples; they were not consistently detected throughout the investigation and are thus not considered to be contaminants of concern in ambient/outdoor air.

The following sections discuss benzene concentrations and trends for each of the three ambient/outdoor air studies included in this Report. Supporting calculations for the Student's t-Test analyses is provided in Appendix B.

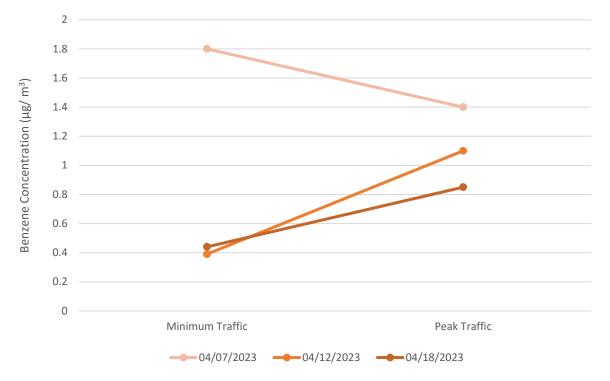
#### 5.1 Peak/Minimum Traffic Study


Benzene detections during peak and minimum traffic conditions were variable, ranging from 0.33  $\mu$ g/m<sup>3</sup> to 1.9  $\mu$ g/m<sup>3</sup>. Benzene detections were found to be lower during minimum traffic conditions (01:00 to 04:00 a.m.) compared to peak traffic conditions (07:00 to 10:00 a.m.); only one minimum traffic sample had a benzene concentration that exceeded its corresponding peak traffic sample (AA-10-20230407-0108 and AA-10-20230407-0705). It is suspected that this sample may have been influenced by a nearby point source such as an idling vehicle. In general, Benzene detections for both peak and minimum traffic conditions were considerably higher on April 7, 2023 compared to the other days, with an average concentration of 1.4  $\mu$ g/m<sup>3</sup>.

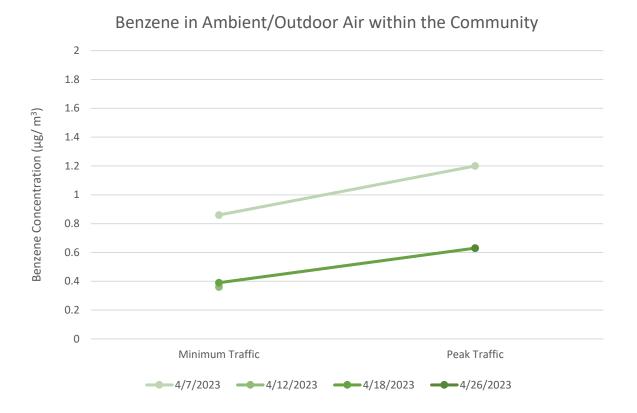
<sup>&</sup>lt;sup>8</sup> <u>http://www.aqmd.gov/home/air-quality/air-quality-studies/health-studies/mates-v/mates-v-air-monitoring-dashboard</u>


It is suspected that differential environmental conditions (e.g., air quality, windspeed) influenced benzene concentrations on that day.

Ambient/outdoor air results from within the Community showed consistently higher benzene concentrations during peak traffic hours when compared to the corresponding minimum traffic periods. Excluding the data collected on April 7, 2023, benzene concentrations were significantly different between peak and minimum traffic conditions when comparing results for freeway-adjacent samples and Community samples, with Student t-Test calculated p-values of 2.2 x 10<sup>-5</sup> and 0.005, respectively. This suggests that the variation is not limited to areas immediately adjacent to the freeways and could be partially attributed to time of day / outdoor temperature. The trend indicating higher benzene concentrations during peak traffic conditions is illustrated in the four charts below.


The trend indicates that increased traffic volume is correlated with higher concentrations of benzene in ambient/outdoor air and that heavy traffic should be considered the most likely contributor to benzene concentrations within the Community and the Los Angeles Basin in general.

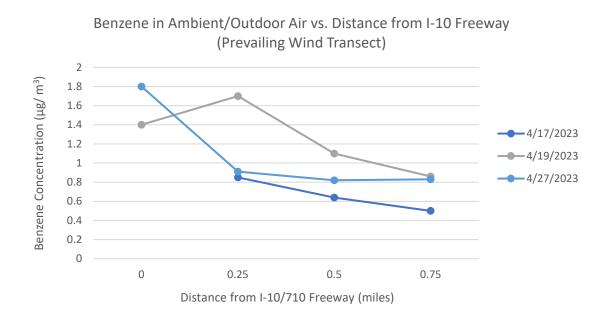



Benzene in Ambient/Outdoor Air Adjacent to Interstate 710 / 10



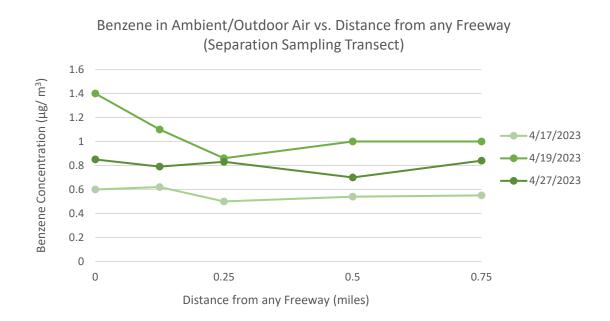
Benzene in Ambient/Outdoor Air Adjacent to Interstate 10




Air Quality Attribution Study Report | ROUX | 17



Benzene detections in ambient/outdoor air were also generally lower in the Community compared to those near the freeways during both minimum and peak traffic conditions. Benzene detections on average were approximately 51% higher near the freeways during minimum traffic conditions and approximately 49% higher during peak traffic conditions compared to detections recorded in the Community. This trend is further discussed in Section 5.2.


### 5.2 Lateral Variation Study

Benzene concentrations along the Prevailing Wind Transect were variable, ranging from 0.64 to 1.8  $\mu$ g/m<sup>3</sup>. This detection range is consistent with the benzene detection ranges reported in the Peak/Minimum Traffic Study, as well as the average benzene levels recorded across the greater Los Angeles Area. Average benzene concentrations recorded during the Lateral Variation Study were not significantly different than benzene concentrations recorded across the greater Los Angeles Area in 2018/2019 (p-value = 0.87). The highest benzene concentrations were recorded at the location immediately adjacent to the I-10 Freeway. Across the three sampling events, benzene concentrations generally decreased with distance from the freeway in the prevailing wind direction, as shown in the chart below. The orientation of the Prevailing Wind Transect is highlighted in pink in Figure 5.



Benzene concentrations along the Separation Sampling Transect were also variable, ranging from  $0.50 \ \mu g/m^3$  to  $1.4 \ \mu g/m^3$ . On average, the highest benzene concentrations along the Separation Sampling Transect were recorded at the sample adjacent to the 710/10 Freeway interchange (zero-mile location). Benzene concentrations generally decreased with distance from the freeways, as shown in the chart below. The orientation of the Prevailing Wind Transect is highlighted in light blue in Figure 5.

The results of the lateral variation study indicate that proximity to the freeways is loosely correlated with higher concentrations of benzene in ambient/outdoor air. Benzene concentrations in ambient/outdoor air samples collected more than 0.125 miles away from any freeway were not significantly different than samples collected in the Community (p-value = 0.02). However, benzene concentrations in ambient/outdoor air samples collected adjacent to and within 0.125 miles of any freeway were significantly different (higher) than samples collected in the Community (p-value =  $6.8 \times 10^{-5}$ ). Ambient/outdoor air samples collected in the former landfills did not exhibit elevated concentrations of benzene. On the basis of the data collected, the former landfills do not appear to be contributing to benzene in ambient/outdoor air.



### 5.3 Gasoline Service Station / Fueling Facilities Study

Benzene concentrations detected in the Fueling Facilities Study ranged from 0.61  $\mu$ g/m<sup>3</sup> to 1.2  $\mu$ g/m<sup>3</sup> and were generally consistent with those detected in the Peak/Minimum Traffic Study and Lateral Variation Study, as well as consistent with, or lower than, the average benzene levels in the greater Los Angeles Area.

The highest benzene detections were recorded at the Fueling Site A and Fueling Site B; both locations are adjacent to private gasoline service stations and are in close proximity to the I-10 Freeway (AA-UST-A; AA-UST-B). Benzene concentrations at Fueling Site A and Fueling Site B were not significantly different than concentrations adjacent to the freeways (p-value = 0.72). The lowest benzene concentration encountered during the fueling facilities study was detected within the Community sample (AA-CT-20230511). The benzene concentrations detected at Fueling Site C (AA-UST-C) and Fueling Site D (AA-UST-D) were not significantly different than the concentrations in the Community (p-value = 0.93).

The results of the fueling facilities study indicate that the nearby private gasoline service stations do not appear to be a measurable contributor to benzene concentrations in the Community ambient/outdoor air. Benzene concentrations in ambient/outdoor air at County fueling facilities (typically less utilized than the private gasoline service stations) were consistent with the benzene concentrations within the Community and also do not appear to be a measurable contributor to the benzene concentrations in the Community and also do not appear to be a measurable contributor to the benzene concentrations in the Community ambient/outdoor air.

#### 5.4 Conclusions

Benzene concentrations across all three studies were generally consistent with, or lower than, average benzene concentrations in the greater Los Angeles area sourced primarily from vehicle exhaust. This consistency is indicative of widespread elevated benzene concentrations in the greater Los Angeles area that are not unique to the Community. Results from each phase of this study indicate that benzene concentrations are generally elevated nearest to freeways. Locations in close proximity to the freeway (within

500 feet) have modestly elevated benzene concentrations compared to the wider Los Angeles ambient/outdoor air, whereas fueling facilities do not appear to have any measurable impacts to the nearby community. Similarly, there was no indication that any of the benzene in the ambient/outdoor air originated from nearby gasoline service stations or the downwind former landfill properties.

Respectfully submitted,

#### ROUX ASSOCIATES, INC.

April McGuire Senior Engineer

Chris Rose, P.E. Principal Engineer

Adam Love, Ph.D. Vice President/Principal Scientist



## 6. References

- California Department of Toxic Substances Control Office of Human and Ecological Risk. *Human Health Risk Assessment Note 5.* August 23, 2014.
- California Department of Toxic Substances Control Office of Human and Ecological Risk. *Human Health Risk Assessment Note 3.* June 2020. Revised May 2022.
- Citadel EHS. Sampling Data Report, City Terrace/Former Cogen Landfill Property. CITADEL Project No. 0018.1138.0. May 2023.

Roux Associates, Inc (Roux). Site-Specific Health and Safety Plan: City Terrace Community. February 2023.

Roux. Preliminary Attribution Study Workplan. April 2023.

Roux. DRAFT Soil Gas and Indoor Air Sampling Report: City Terrace Community. May 2023.

San Francisco Bay Regional Water Quality Control Board. Environmental Screening Levels. May 2022.

United States Environmental Protection Agency. Regional Screening Levels. May 2023.

United States Environmental Protection Agency. *Environmental Data Review Supplement for Region 1 Data Review Elements and Superfund Specific Guidance/Procedures*. September 2020.

- 1. Selected Volatile Organic Compounds (VOCs) Peak/Minimum Traffic Study
- 2. Selected Volatile Organic Compounds (VOCs) Lateral Variation Study
- 3. Selected Volatile Organic Compounds (VOCs) Fueling Facilities Study

## Table 1 - Selected Volatile Organic Compounds (VOCs) Peak/Minimum Traffic Study City Terrace Neighborhood, Los Angeles County, California

| Location            | Peak or Minimum Traffic | Time Sampled   | Date Sampled           | Sample ID                                    | Acetone    | Benzene     | 1,4-Dichlorobenzene | Dichlorodifluoromethane | 1,1-Difluoroethane    | Ethylbenzene | Methylene chloride | Toluene    | Trichlorofluoromethane | 1,1,2-Trichloro-1,2,2-trifluoroethane | p- & m-Xylenes | o-Xylene    | Total Xylenes | Methane (CH4) |
|---------------------|-------------------------|----------------|------------------------|----------------------------------------------|------------|-------------|---------------------|-------------------------|-----------------------|--------------|--------------------|------------|------------------------|---------------------------------------|----------------|-------------|---------------|---------------|
|                     |                         |                |                        | Units                                        |            |             |                     |                         |                       |              | s per cubic n      |            | )                      |                                       |                |             |               | ppmv          |
|                     |                         |                |                        | Analytical Method                            |            |             | 0.001               | 400*                    | 1 40 000*             | 1            | Method TO          |            | 4 0 0 0                | = 000t                                | 4001           | 100*        | 1 4000        | ASTM-D1946    |
|                     |                         |                |                        | Note 3 SL, Unless Otherwise Noted            | 32,000^    | 0.097       | 0.26*               | 100*                    | 42,000*               | 1.1*         | 1.0                | 310        | 1,300                  | 5,200*                                | 100*           | 100*        | 100*          | 50,000***     |
|                     | Minimum Troffin         | 1:00am 1:00am  | 4/7/2023               | AA-710-20230407-0058                         | 11         | 1.4         | <0.20               | 2.9                     | 1.3 J                 | 0.56         | < 0.20             | 2.9        | 1.5                    | 0.66                                  | 2.4            | 0.81        | 3.2           | 31            |
|                     | Minimum Traffic         | 1:00am-4:00am  | 4/12/2023              | AA-710-20230412-0105                         | 9.8        | 0.33        | <0.20               | 2.4                     | <5.0                  | 0.17         | <0.20              | 0.95       | 1.5                    | 0.67                                  | 0.53           | 0.20        | 0.73          | 18            |
| 740 Adia sout       |                         |                | 4/18/2023              | AA-710-20230418-0104<br>AA-710-20230407-0700 | 3.4<br>15  | 0.58<br>1.6 | <0.20<br><0.20      | 2.1<br>2.9              | 0.52 J<br>1.3 J       | 0.15<br>0.80 | <0.20<br><0.20     | 1.6<br>3.9 | 1.3<br>1.4             | 0.59<br>0.64                          | 0.59<br>3.3    | 0.19<br>1.1 | 0.78<br>4.4   | 23<br>19      |
| 710 Adjacent        |                         |                | 4/7/2023               |                                              |            |             |                     |                         |                       | 0.80         |                    |            | 1.4                    |                                       | 3.3            |             | 4.4           | 2.2           |
|                     | Peak Traffic            | 7:00am-10:00am | 4/40/0000              | AA-710-20230407-0700-D                       | 20         | 1.6         | <0.20               | 2.9                     | 1.6 J                 |              | <2.0               | 4.4        |                        | 0.63                                  |                | 1.1         |               |               |
|                     |                         |                | 4/18/2023<br>4/26/2023 | AA-710-20230418-0707                         | 4.8 J      | 0.96        | <0.20               | 2.2                     | <5.0<br><b>0.93 J</b> | 0.48         | <0.2               | 3.2        | 1.3                    | 0.60                                  | 1.8            | 0.65        | 2.4<br>1.6    | 2.1           |
|                     |                         |                | 4/26/2023              | AA-710-20230426-0700<br>AA-10-20230407-0108  | 7.8<br>29  | 1.8         | <0.20<br><0.20      | 1.4<br>3.2              | 0.93 J<br>1.8 J       | 0.35         | <0.2<br><0.20      | 1.6<br>5.3 | 1.4<br>1.5             | 0.61                                  | 1.1<br>4.4     | 0.44        | 5.9           | 3.8<br>2.3    |
|                     | Minimum Traffic         | 1:00am-4:00am  | 4/12/2023              | AA-10-20230407-0108<br>AA-10-20230412-0110   | 4.9        | 0.39        | <0.20               | 2.5                     | <5.0                  | 0.18         | <0.20              | 5.3<br>1.0 | 1.5                    | 0.60                                  | 4.4<br>0.58    | 1.4<br>0.22 | 0.80          | 2.3           |
|                     |                         | 1.00am-4.00am  | 4/12/2023              | AA-10-20230412-0110<br>AA-10-20230418-0105   | 4.9<br>5.9 | 0.39        | <0.20               | 2.3                     | 0.73 J                | 0.18         | <0.20              | 1.6        | 1.3                    | 0.60                                  | 0.58           | 0.22        | 0.80          | 1.8 J         |
| 10 Adjacent         |                         |                | 4/7/2023               | AA-10-20230407-0705                          | 18         | 1.4         | <0.20               | 3.3                     | 3.6 J                 | 0.63         | <0.20              | 3.6        | 1.5                    | 0.64                                  | 2.5            | 0.86        | 3.4           | 29            |
|                     | Peak Traffic            | 7:00am-10:00am | 4/18/2023              | AA-10-20230418-0704                          | 5.5 J      | 1.1         | <0.20               | 2.1                     | 0.55 J                | 0.62         | <0.20              | 3.5        | 1.3                    | 0.60                                  | 2.3            | 0.87        | 3.2           | 4.7           |
|                     |                         |                | 4/26/2023              | AA-10-20230426-0645                          | 56         | 0.85        | 0.19 J              | 2.7                     | 4.5 J                 | 0.43         | <0.20              | 1.9        | 1.4                    | 0.60                                  | 1.5            | 0.61        | 2.1           | 50            |
|                     |                         |                | 4/7/2023               | AA-710/10-20230407-0110                      | 13         | 1.4         | <0.20               | 2.8                     | 1.9 J                 | 0.70         | <0.20              | 3.5        | 1.4                    | 0.63                                  | 2.8            | 0.90        | 3.7           | 6.0           |
|                     | ···                     | 4.00           | 4/12/2023              | AA-710/10-20230412-0100                      | 9.3        | 0.39        | <0.20               | 2.4                     | <5.0                  | 0.19         | <0.20              | 1.1        | 1.5                    | 0.68                                  | 0.65           | 0.24        | 0.89          | 3.0           |
|                     | Minimum Traffic         | 1:00am-4:00am  | 1/10/0000              | AA-710/10-20230418-0057                      | 4.3        | 0.58        | <0.20               | 2.1                     | 0.58 J                | 0.16         | <0.20              | 1.5        | 1.3                    | 0.60                                  | 0.64           | 0.21        | 0.86          | 4.3           |
| 710/10 Intersection |                         |                | 4/18/2023              | AA-710/10-20230418-0057-D                    | 5.6        | 0.47        | <0.20               | 2.2                     | 0.66 J                | 0.17         | <0.20              | 1.5        | 1.3                    | 0.60                                  | 0.68           | 0.21        | 0.89          | 67            |
|                     |                         |                | 4/7/2023               | AA-710/10-20230407-0651                      | 15         | 1.9         | <0.20               | 3.0                     | 1.3 J                 | 0.82         | <0.20              | 4.0        | 1.6                    | 0.64                                  | 3.3            | 1.1         | 4.4           | 2.3           |
|                     | Peak Traffic            | 7:00am-10:00am | 4/18/2023              | AA-710/10-20230418-0656                      | 4.9 J      | 1.2         | <0.20               | 2.2                     | 0.52 J                | 0.66         | <0.20              | 3.3        | 1.3                    | 0.59                                  | 2.5            | 0.95        | 3.4           | 6.1           |
|                     |                         |                | 4/26/2023              | AA-710/10-20230426-0705                      | 9.1        | 1.2         | <0.20               | 1.6                     | 1.6 J                 | 0.68         | 4.9                | 1.6        | 1.4                    | 0.60                                  | 2.7            | 0.99        | 3.7           | 2.9           |
|                     |                         |                | 4/7/2023               | AA-CT-20230407-0100                          | 15         | 0.86        | <0.20               | 2.8                     | 1.2 J                 | 0.40         | <2.0               | 2.0        | 1.5                    | 0.66                                  | 1.6            | 0.54        | 2.1           | 5.2           |
|                     | Minimum Traffic         | 1:00am-4:00am  | 4/12/2023              | AA-CT-20230412-0055                          | 5.5        | 0.36        | <0.20               | 2.4                     | <5.0                  | 0.20         | <0.20              | 1.6        | 1.5                    | 0.70                                  | 0.69           | 0.24        | 0.93          | 11            |
| City Terrace        |                         |                | 4/18/2023              | AA-CT-20230418-0055                          | 3.9        | 0.39        | <0.20               | 2.1                     | 0.66 J                | 0.14         | <0.20              | 1.5        | 1.3                    | 0.61                                  | 0.53           | 0.16        | 0.69          | 5.0           |
| Neighborhood        |                         |                | 4/7/2023               | AA-CT-20230407-0655                          | 19         | 1.2         | <0.20               | 3.4                     | 1.3 J                 | 0.46         | <0.20              | 2.9        | 1.5                    | 0.63                                  | 1.7            | 0.60        | 2.3           | 5.2           |
|                     | Peak Traffic            | 7:00am-10:00am | 4/18/2023              | AA-CT-20230418-0655                          | 8.9 J      | 0.65        | <0.20               | 2.1                     | 1.0 J                 | 0.41         | 8.3                | 2.8        | 1.3                    | 0.64                                  | 1.6            | 0.55        | 2.1           | 21            |
|                     |                         |                | 4/26/2023              | AA-CT-20230426-0650                          | 13         | 0.63        | <0.20               | 1.4                     | 1.7 J                 | 0.35         | <0.2               | 1.6        | 1.4                    | 0.63                                  | 1.2            | 0.45        | 1.6           | 3.3           |

#### Notes:

Only analytes with one or more detections are included in this table.

ppmv = parts per million volume

USEPA = United States Environmental Protection Agency

DTSC HERO HHRA Note 3 SL for Residential Air = California Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Note 3 Screening Level (SL) for Residential Air (updated May 2022) SFBRWQCB ESLs for Indoor Air = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels for Indoor Air (2019, Revision 2)

^ = Screening level references SFBRWQCB ESLs for Indoor air (2019, Revision 2) because USEPA Regional Screening Levels and DTSC HERO HHRA Note 3 Screening Levels not available for selected analyte.

\* = Screening level references USEPA Regional Screening Level for Residential Air THQ = 1.0 (May 2022) because DTSC HERO HHRA Note 3 SL not available for the selected analyte.

\*\*\* = 100% of the Lower Explosive Limit (LEL) for Methane

*Italics* indicate a duplicate sample

Yellow highlight indicates concentration exceeds SL

Concentrations detected above the method detection limit are in **bold** 

<X = analyte not detected above the laboratory practical quantitation limit (X)

J = flag indicates detection is below the reporting limit/practical quantitation limit and is an estimated concentration



### Table 2 - Selected Volatile Organic Compounds (VOCs) Lateral Variation Study City Terrace Neighborhood, Los Angeles County, California

| Location                                  | Date Sampled           | Sample ID                        | Acetone   | Benzene      | Chloroform   | Dichlorodifluoromethane | 1,1-Difluoroethane | Ethylbenzene | Methylene chloride | Toluene                     | #Trichloroethene   | Trichlorofluoromethane | 1,1,2-Trichloro-1,2,2-trifluoroethane | p- & m-Xylenes | o-Xylene     | Total Xylenes | Methane (CH4)      |
|-------------------------------------------|------------------------|----------------------------------|-----------|--------------|--------------|-------------------------|--------------------|--------------|--------------------|-----------------------------|--------------------|------------------------|---------------------------------------|----------------|--------------|---------------|--------------------|
|                                           |                        | Units<br>Analytical Method       |           |              |              |                         |                    |              |                    | ubic meter (<br>od TO-15 SI |                    |                        |                                       |                |              |               | ppmv<br>ASTM-D1946 |
|                                           |                        |                                  | 22.0004   | 0.097        | 0.12*        | 400*                    | 40.000*            |              | 1                  | 310                         | 2.0**              | 4 200                  | E 200*                                | 100*           | 400*         | 100*          |                    |
|                                           |                        | 3 SL, Unless Otherwise Noted     | 32,000^   |              | -            | 100*                    | 42,000*            | 1.1*         | 1.0                |                             | -                  | 1,300                  | 5,200*                                |                | 100*         |               | 50,000***          |
| Cogon Londfill Adiocont                   | 4/17/2023              | AA-CL-20230417                   | 4.7 J     | 0.45         | 0.27         | 2.2                     | 0.54 J             | 0.20         | <0.2               | 1.7                         | <0.1               | 1.4                    | 0.65                                  | 0.75           | 0.24         | 0.99          | 33                 |
| Cogen Landfill Adjacent                   | 4/19/2023<br>4/27/2023 | AA-CL-20230419<br>AA-CL-20230427 | 7.1<br>13 | 0.96<br>0.75 | <0.1<br><0.1 | 2.1<br>2.8              | 0.76 J<br>0.73 J   | 0.39<br>0.36 | <0.2<br>0.77       | 1.9<br>2.0                  | <b>3.4</b><br><0.1 | 1.3<br>1.4             | 0.61<br>0.59                          | 1.4<br>1.2     | 0.49<br>0.45 | 1.9<br>1.7    | 63<br>64           |
|                                           | 4/27/2023              | AA-CL-20230427<br>AA-BL-20230417 | 5.4       | 0.75         | <0.1         | 2.0                     | 0.73 J             | 0.30         | <0.2               | 1.9                         | <0.1               | 1.4                    | 0.65                                  | 1.1            | 0.43         | 1.4           | 1.9 J              |
| Blanchard Landfill Adjacent               | 4/19/2023              | AA-BL-20230417<br>AA-BL-20230419 | 8.5       | 0.30         | <0.1         | 2.2                     | 0.37 J             | 0.32         | <0.2               | 1.9                         | 0.93               | 1.4                    | 0.65                                  | 1.6            | 0.52         | 2.1           | <2.0               |
| Bianchard Eandin Adjacent                 | 4/13/2023              | AA-BL-20230413                   | 15        | 0.75         | <0.1         | 3.2                     | 0.78 J             | 0.40         | <0.2               | 2.5                         | <0.1               | 1.3                    | 0.59                                  | 1.4            | 0.50         | 1.9           | 2.2                |
|                                           | 4/17/2023              | AA-710/10-20230417               | 7.1       | 0.60         | <0.1         | 2.1                     | 0.56 J             | 0.40         | <0.2               | 1.9                         | <0.1               | 1.4                    | 0.65                                  | 1.4            | 0.38         | 1.4           | 5.3                |
|                                           | 4/19/2023              | AA-710/10-20230419               | 7.3       | 1.4          | <0.1         | 2.0                     | 0.78 J             | 0.65         | <0.2               | 2.6                         | 2.2                | 1.2                    | 0.57                                  | 2.3            | 0.90         | 3.2           | <2.0               |
| 710/10 Intersection                       |                        | AA-710/10-20230427               | 10        | 0.85         | <0.1         | 2.8                     | 0.78 J             | 0.42         | <0.2               | 2.0                         | < 0.1              | 1.4                    | 0.61                                  | 1.5            | 0.53         | 2.0           | 2.2                |
|                                           | 4/27/2023              | AA-710/10-20230427-D             | 16        | 0.82         | <0.1         | 3.2                     | 0.71 J             | 0.40         | <0.2               | 2.4                         | <0.1               | 1.4                    | 0.59                                  | 1.4            | 0.52         | 1.9           | 2.1                |
|                                           | 4/47/2022              | AA-0.125MI-20230417              | 5.3       | 0.62         | 0.31         | 2.0                     | 1.3 J              | 0.25         | <0.2               | 1.8                         | <0.1               | 1.4                    | 0.65                                  | 0.92           | 0.32         | 1.2           | 7.6                |
| 0.125 miles from freeways                 | 4/17/2023              | AA-0.125MI-20230417-D            | 4.9 J     | 0.56         | < 0.1        | 2.4                     | 0.70 J             | 0.26         | <0.2               | 1.8                         | <0.1               | 1.4                    | 0.65                                  | 0.97           | 0.32         | 1.3           | 2.1                |
| and landfills                             | 4/19/2023              | AA-0.125MI-20230419              | 8.3       | 1.1          | <0.1         | 2.1                     | 1.1 J              | 0.59         | <0.2               | 2.5                         | 2.6                | 1.3                    | 0.61                                  | 2.1            | 0.77         | 2.8           | <2.0               |
|                                           | 4/27/2023              | AA-0.125MI-20230427              | 12        | 0.79         | <0.1         | 2.9                     | 0.84 J             | 0.37         | <0.2               | 1.9                         | <0.1               | 1.3                    | 0.58                                  | 1.3            | 0.47         | 1.8           | 28                 |
| 0.25 miles from frequence and             | 1/17/2022              | AA-0.25MI-20230417               | 11        | 0.50         | <0.1         | 2.3                     | 0.48 J             | 0.26         | <0.2               | 1.8                         | <0.1               | 1.4                    | 0.66                                  | 0.92           | 0.32         | 1.2           | 80                 |
| 0.25 miles from freeways and<br>landfills | 4/19/2023              | AA-0.25MI-20230419               | 8.0       | 0.86         | <0.1         | 2.2                     | 0.73 J             | 0.46         | <0.2               | 1.8                         | 2.7                | 1.3                    | 0.61                                  | 1.7            | 0.58         | 2.2           | <2.0               |
| landillis                                 | 4/27/2023              | AA-0.25MI-20230427               | 16        | 0.83         | <0.1         | 3.2                     | 0.83 J             | 0.50         | <0.2               | 2.6                         | <0.1               | 1.4                    | 0.59                                  | 1.8            | 0.66         | 2.5           | 3.9                |
| 0.5 miles from freeway and                | 4/17/2023              | AA-0.5MI-20230417                | 5.2       | 0.54         | <0.1         | 2.2                     | 0.44 J             | 0.23         | <0.2               | 1.9                         | <0.1               | 1.4                    | 0.65                                  | 0.87           | 0.28         | 1.1           | 1.9 J              |
| landfills                                 | 4/19/2023              | AA-0.5MI-20230419                | 10        | 1.0          | <0.1         | 2.1                     | 1.0 J              | 0.52         | <0.2               | 2.2                         | 3.6                | 1.3                    | 0.60                                  | 1.9            | 0.67         | 2.6           | 12                 |
|                                           | 4/27/2023              | AA-0.5MI-20230427                | 10        | 0.70         | <0.1         | 2.8                     | 0.95 J             | 0.36         | <0.2               | 1.8                         | <0.1               | 1.4                    | 0.59                                  | 1.3            | 0.45         | 1.7           | 5.1                |
|                                           | 4/17/2023              | AA-0.75MI-20230417               | 8.2       | 0.55         | <0.1         | 2.3                     | 1.3 J              | 0.29         | <0.2               | 2.2                         | <0.1               | 1.4                    | 0.66                                  | 1.1            | 0.36         | 1.5           | 5.6                |
| 0.75 miles from freeways and              | 4/19/2023              | AA-0.75MI-20230419               | 7.7       | 1.0          | <0.1         | 2.1                     | 1.1 J              | 0.54         | <0.2               | 2.2                         | 4.5                | 1.3                    | 0.61                                  | 1.9            | 0.68         | 2.6           | <2.0               |
| landfills                                 |                        | AA-0.75MI-20230419-D             | 7.6       | 1.1          | <0.1         | 2.1                     | 1.3 J              | 0.51         | <0.2               | 2.2                         | 0.57               | 1.3                    | 0.59                                  | 1.9            | 0.65         | 2.5           | <2.0               |
|                                           | 4/27/2023              | AA-0.75MI-20230427               | 14        | 0.84         | <0.1         | 2.8                     | 0.96 J             | 0.45         | <0.2               | 2.2                         | <0.1               | 1.4                    | 0.60                                  | 1.6            | 0.57         | 2.1           | 4.2                |
|                                           | 4/17/2023              | AA-PW1-20230417                  | NA        | NA           | NA           | NA                      | NA                 | NA           | NA                 | NA                          | NA                 | NA                     | NA                                    | NA             | NA           | NA            | NA                 |
| Prevailing wind sample 1                  | 4/19/2023              | AA-PW1-20230419                  | 14        | 1.4          | <0.1         | 2.0                     | 1.1 J              | 0.86         | <0.2               | 2.9                         | 4.3                | 1.2                    | 0.58                                  | 3.0            | 1.2          | 4.1           | 2.1                |
|                                           | 4/27/2023              | AA-PW1-20230427                  | 23        | 1.8          | <0.2         | 4.4                     | 2.1 J              | 1.0          | <0.8               | 6.0                         | <0.4               | 2.4                    | 1.0                                   | 3.3            | 1.3          | 4.6           | 6.4                |
| Dreveiling wind served. C                 | 4/17/2023              | AA-PW2-20230417                  | 7.4       | 0.85         | <0.1         | 2.2                     | 1.4 J              | 0.43         | <0.2               | 2.6                         | <0.1               | 1.4                    | 0.64                                  | 1.6            | 0.56         | 2.1           | 22                 |
| Prevailing wind sample 2                  | 4/19/2023              | AA-PW2-20230419                  | 14        | 1.7          | <0.1         | 2.0                     | 1.2 J              | 0.88         | <0.2               | 3.6                         | 3.9                | 1.3                    | 0.58                                  | 3.0            | 1.2          | 4.2           | 55                 |
|                                           | 4/27/2023              | AA-PW2-20230427                  | 12        | 0.91         | <0.1         | 2.7                     | 0.86 J             | 0.47         | <0.2               | 2.4                         | <0.1               | 1.3                    | 0.57                                  | 1.7            | 0.60         | 2.3           | 3.1                |
| Drovoiling wind comple 0                  | 4/17/2023<br>4/19/2023 | AA-PW3-20230417                  | 5.3       | 0.64         | <0.1         | 2.2                     | 0.61 J             | 0.33<br>0.54 | <0.2               | 2.1                         | <0.1               | 1.4                    | 0.66<br>0.58                          | 1.2            | 0.37         | 1.6           | 40                 |
| Prevailing wind sample 3                  |                        | AA-PW3-20230419                  | 8.3<br>10 | 1.1<br>0.82  | <0.1<br><0.1 | 2.0<br>2.6              | 0.76 J<br>0.76 J   | 0.54         | <0.2<br><0.2       | 2.4<br>2.1                  | <b>3.7</b><br><0.1 | 1.3<br>1.3             | 0.58                                  | 1.9<br>1.5     | 0.69<br>0.54 | 2.6<br>2.1    | <2.0<br><b>2.2</b> |
|                                           | 4/27/2023              | AA-PW3-20230427                  | 10        | 0.82         | <0.1         | 2.0                     | 0.76 J             | 0.42         | <0.2               | 2.1                         | <0.1               | 1.3                    | 0.56                                  | 1.5            | 0.54         | 2.1           | 2.2                |

#### Notes:

Only analytes with one or more detections are included in this table.

ppmv = parts per million volume

USEPA = United States Environmental Protection Agency

DTSC HERO HHRA Note 3 SL for Residential Air = California Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Note 3 Screening Level (SL) for Residential Air (updated May 2022) SFBRWQCB ESLs for Indoor Air = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels for Indoor Air (2019, Revision 2)

^ = Screening level references SFBRWQCB ESLs for Indoor air (2019, Revision 2) because USEPA Regional Screening Levels and DTSC HERO HHRA Note 3 Screening Levels not available for selected analyte.

\* = Screening level references USEPA Regional Screening Level for Residential Air THQ = 1.0 (May 2022) because DTSC HERO HHRA Note 3 SL not available for the selected analyte.

\*\* = Screening level references DTSC HERO HHRA Note 5 Screening Level for Residential Air for Trichloroethylene (August 2014)

\*\*\* = 100% of the Lower Explosive Limit (LEL) for Methane

Italics indicate a duplicate sample

Yellow highlight indicates concentration exceeds SL

Concentrations detected above the method detection limit are in **bold** 

NA = not analyzed

<X = analyte not detected above the laboratory practical quantitation limit (X)

J = flag indicates detection is below the reporting limit/practical quantitation limit and is an estimated concentration

Sample AA-PW1-20230417 could not be collected due to SUMMA canister theft during deployment.

### Table 3 - Selected Volatile Organic Compounds (VOCs) Fueling Facilities Study

| Citv Terrace | Neighborhood, | Los Angeles | County.                             | California |
|--------------|---------------|-------------|-------------------------------------|------------|
|              |               |             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |            |

| Location                            | Date Sampled        | Sample ID                    | Acetone                              | Benzene | Dichlorodifluoromethane | 1,1-Difluoroethane | Ethylbenzene | Toluene | Trichlorofluoromethane | 1,1,2-Trichloro-1,2,2-trifluoroethane | p- & m-Xylenes | o-Xylene | Total Xylenes | Methane (CH4) |
|-------------------------------------|---------------------|------------------------------|--------------------------------------|---------|-------------------------|--------------------|--------------|---------|------------------------|---------------------------------------|----------------|----------|---------------|---------------|
|                                     |                     | Units                        | s micrograms per cubic meter (μg/m³) |         |                         |                    |              |         |                        |                                       |                |          |               | ppmv          |
|                                     |                     | Method                       | USEPA Method TO-15 SIM               |         |                         |                    |              |         |                        |                                       |                |          |               | ASTM-D1946    |
|                                     | DTSC HERO HHRA Note | 3 SL, Unless Otherwise Noted | 32,000^                              | 0.097   | 100*                    | 42,000*            | 1.1*         | 310     | 1,300                  | 5,200*                                | 100*           | 100*     | 100*          | 50,000***     |
| UST/Fueling Site A - 1600 N Eastern | 5/11/2023           | AA-UST-A-20230511            | 3.5                                  | 1.2     | 2.9                     | 0.98 J             | 0.57         | 2.4     | 1.4                    | 0.61                                  | 2.4            | 0.81     | 3.2           | 2.9 J         |
| UST/Fueling Site B - 1535 N Eastern | 5/11/2023           | AA-UST-B-20230511            | 4.4                                  | 1.2     | 2.9                     | 1.9 J              | 0.71         | 2.9     | 1.4                    | 0.61                                  | 3.2            | 1.1      | 4.3           | 3.3           |
| UST/Fueling Site C - 1104 N Eastern | 5/11/2023           | AA-UST-C-20230511            | 5.4                                  | 0.61    | 2.9                     | 0.47 J             | 0.35         | 1.7     | 1.4                    | 0.62                                  | 1.4            | 0.50     | 1.9           | 3.0 J         |
| -                                   | 5/11/2023           | AA-UST-C-20230511-D          | 3.5                                  | 0.65    | 2.8                     | 0.47 J             | 0.34         | 1.6     | 1.4                    | 0.62                                  | 1.4            | 0.47     | 1.8           | 3.3           |
| UST/Fueling Site D - 1108 Sheriff   | 5/11/2023           | AA-UST-D-20230511            | 2.8                                  | 0.66    | 2.8                     | 0.42 J             | 0.31         | 1.5     | 1.4                    | 0.62                                  | 1.2            | 0.43     | 1.6           | 3.5           |
| City Terrace Neighborhood Sample    | 5/11/2023           | AA-CT-20230511               | 2.4                                  | 0.59    | 2.7                     | 0.47 J             | 0.26         | 1.1     | 1.4                    | 0.61                                  | 0.94           | 0.33     | 1.3           | 4.0           |

#### Notes:

Only analytes with one or more detections are included in this table.

UST = underground storage tank

ppmv = parts per million volume

USEPA = United States Environmental Protection Agency

DTSC HERO HHRA Note 3 SL for Residential Air = California Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Note 3 Screening Level (SL) for Residential Air (updated May 20: SFBRWQCB ESLs for Indoor Air = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels for Indoor Air (2019, Revision 2)

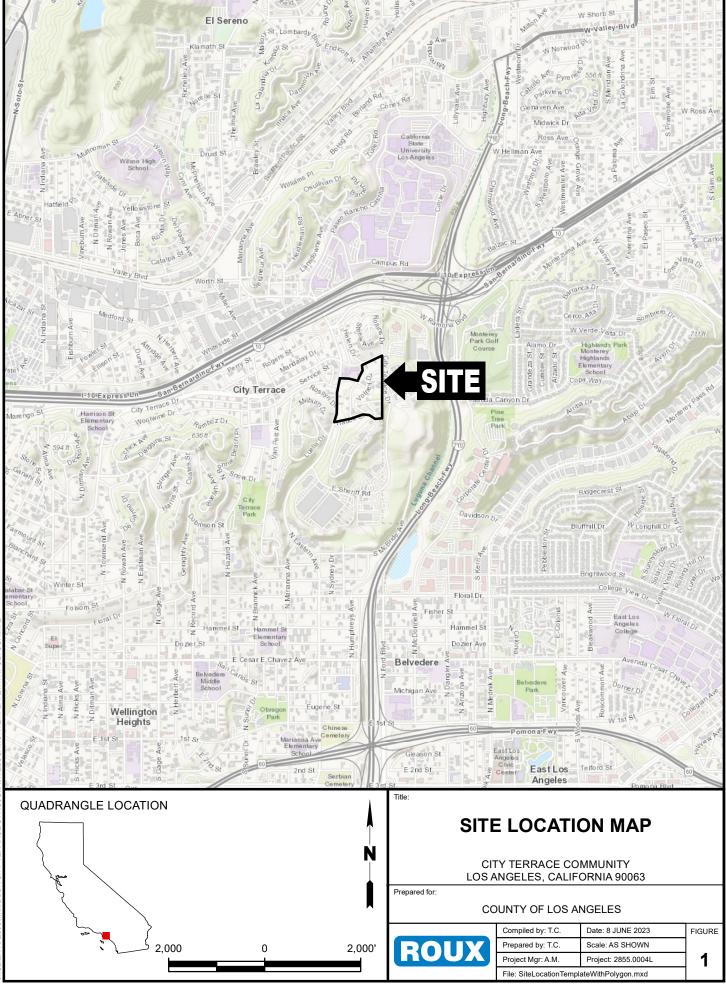
^ = Screening level references SFBRWQCB ESLs for Indoor air (2019, Revision 2) because USEPA Regional Screening Levels and DTSC HERO HHRA Note 3 Screening Levels not available for selected analyte. \* = Screening level references USEPA Regional Screening Level for Residential Air THQ = 1.0 (May 2022) because DTSC HERO HHRA Note 3 SL not available for the selected analyte.

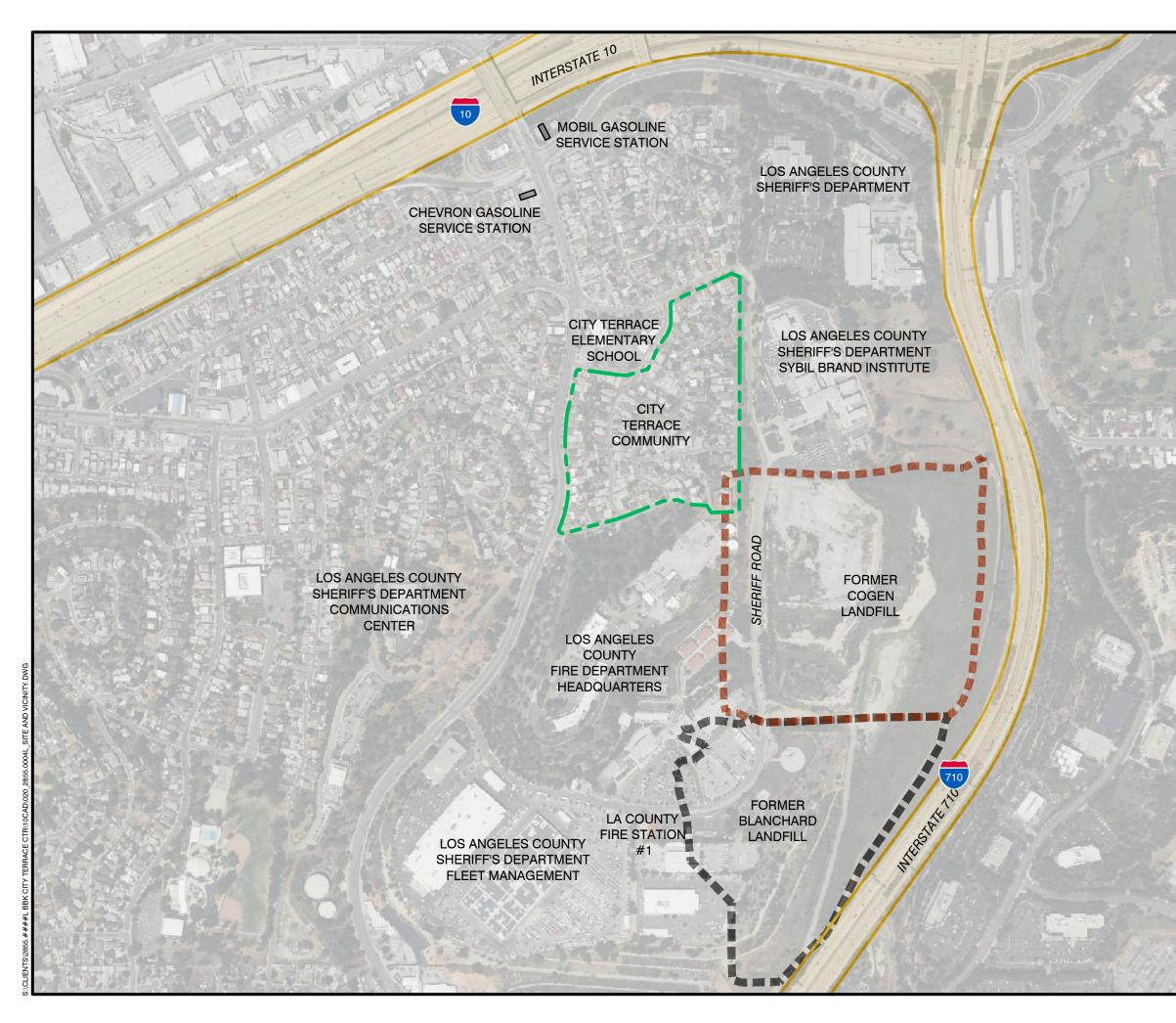
\*\* = Screening level references DTSC HERO HHRA Note 5 Screening Level for Residential Air for Trichloroethylene (August 2014)

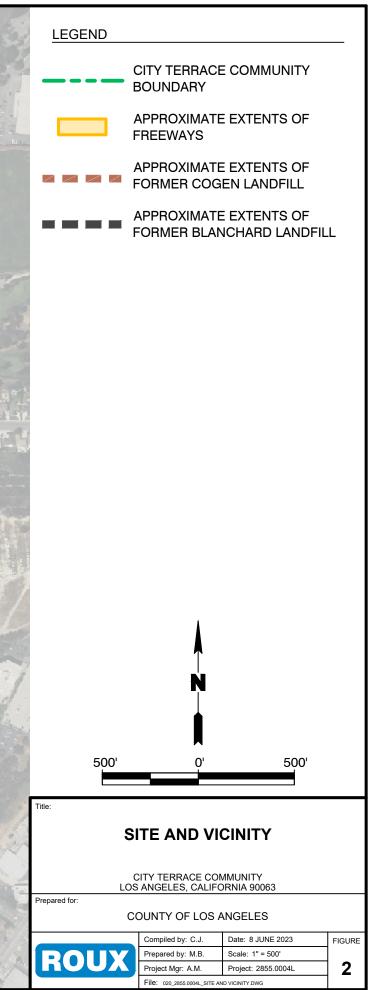
\*\*\* = 100% of the Lower Explosive Limit (LEL) for Methane

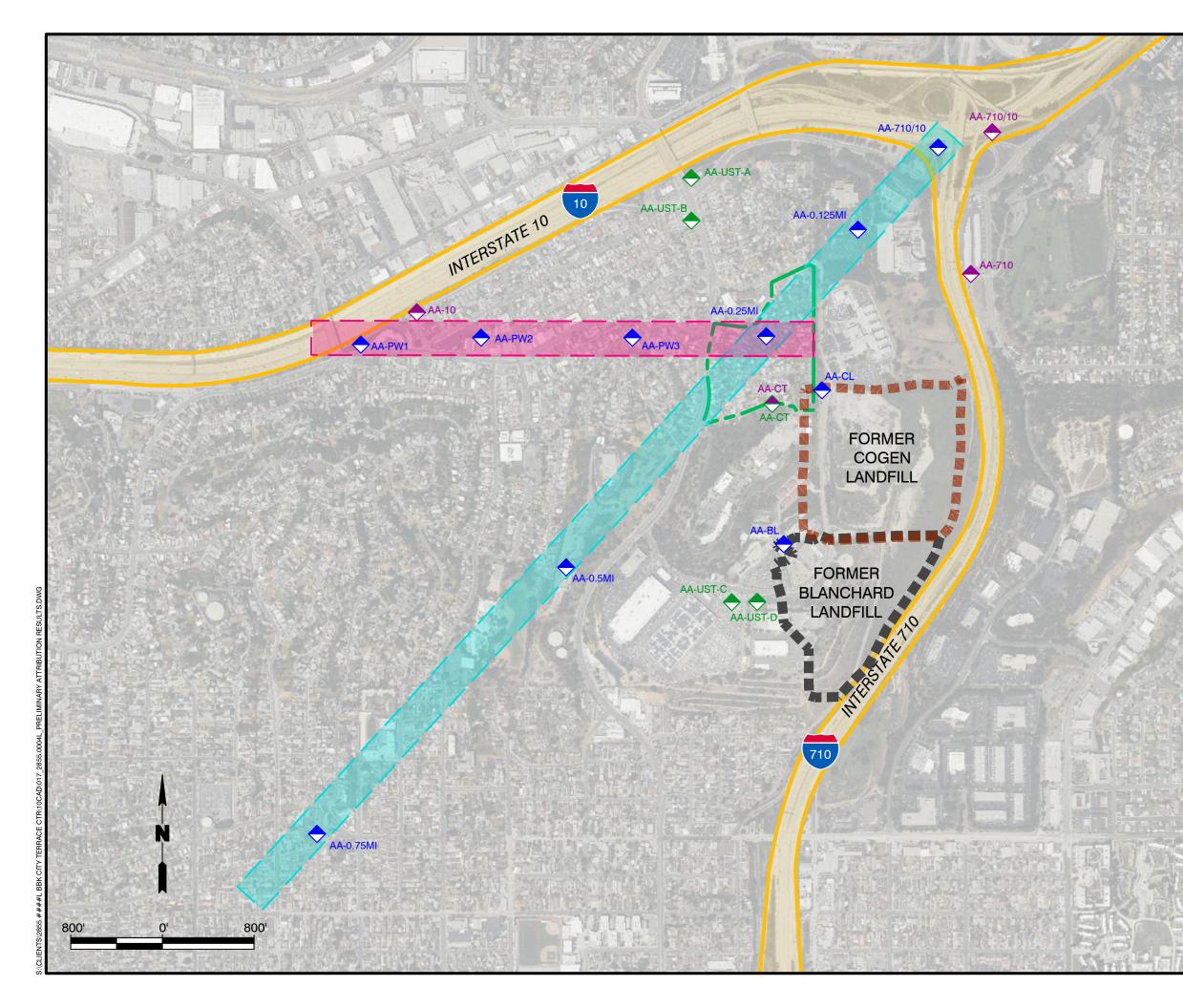
Italics indicate a duplicate sample

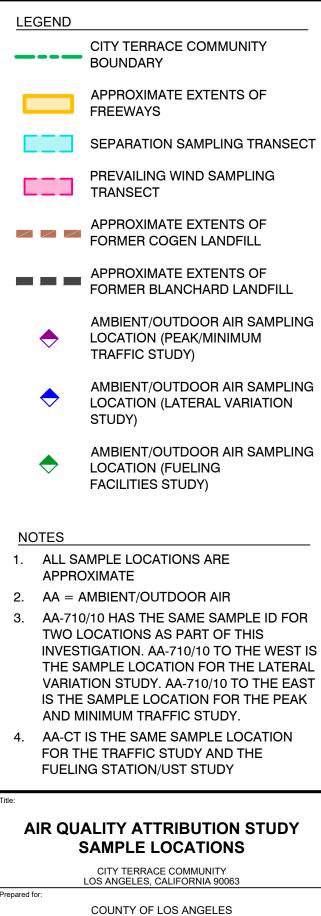
Yellow highlight indicates concentration exceeds SL


Concentrations detected above the method detection limit are in **bold** 


<X = analyte not detected above the laboratory practical quantitation limit (X)


J = flag indicates detection is below the reporting limit/practical quantitation limit and is an estimated concentration

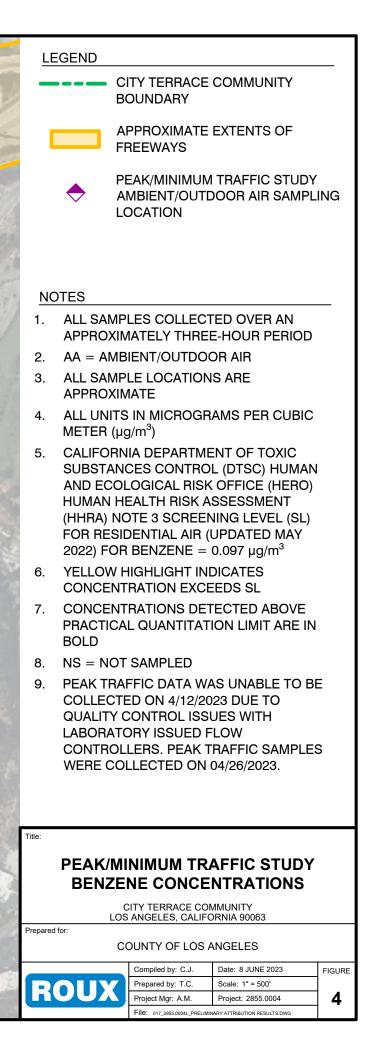




- 1. Site Location Map
- 2. Site and Vicinity
- 3. Air Quality Attribution Study Sample Locations
- 4. Peak/Minimum Traffic Study Benzene Concentrations
- 5. Lateral Variation Study Benzene Concentrations
- 6. Fueling Facilities Study Benzene Concentrations

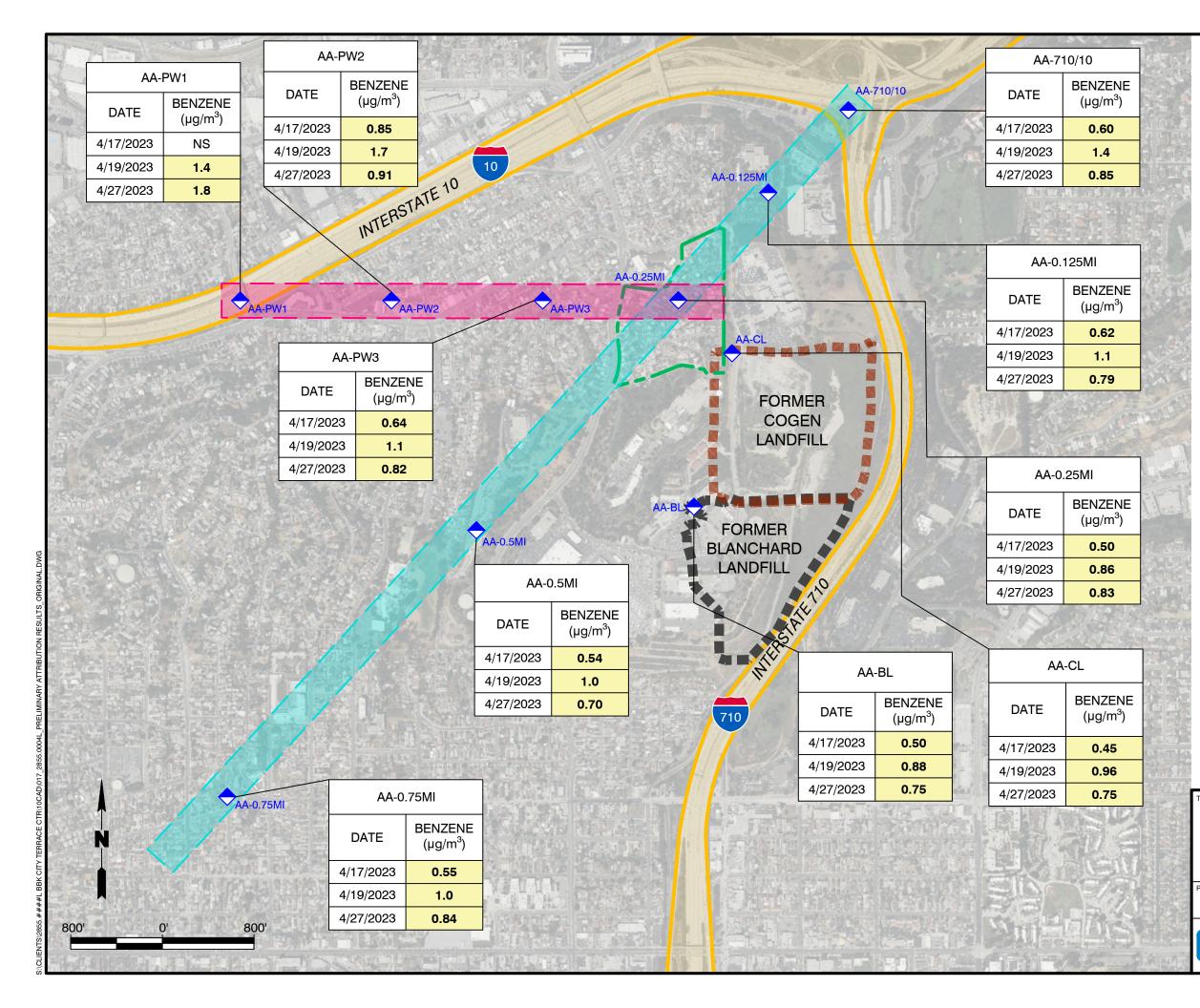


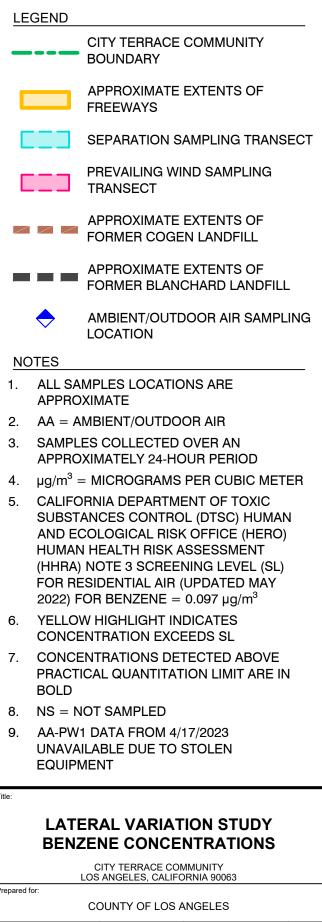






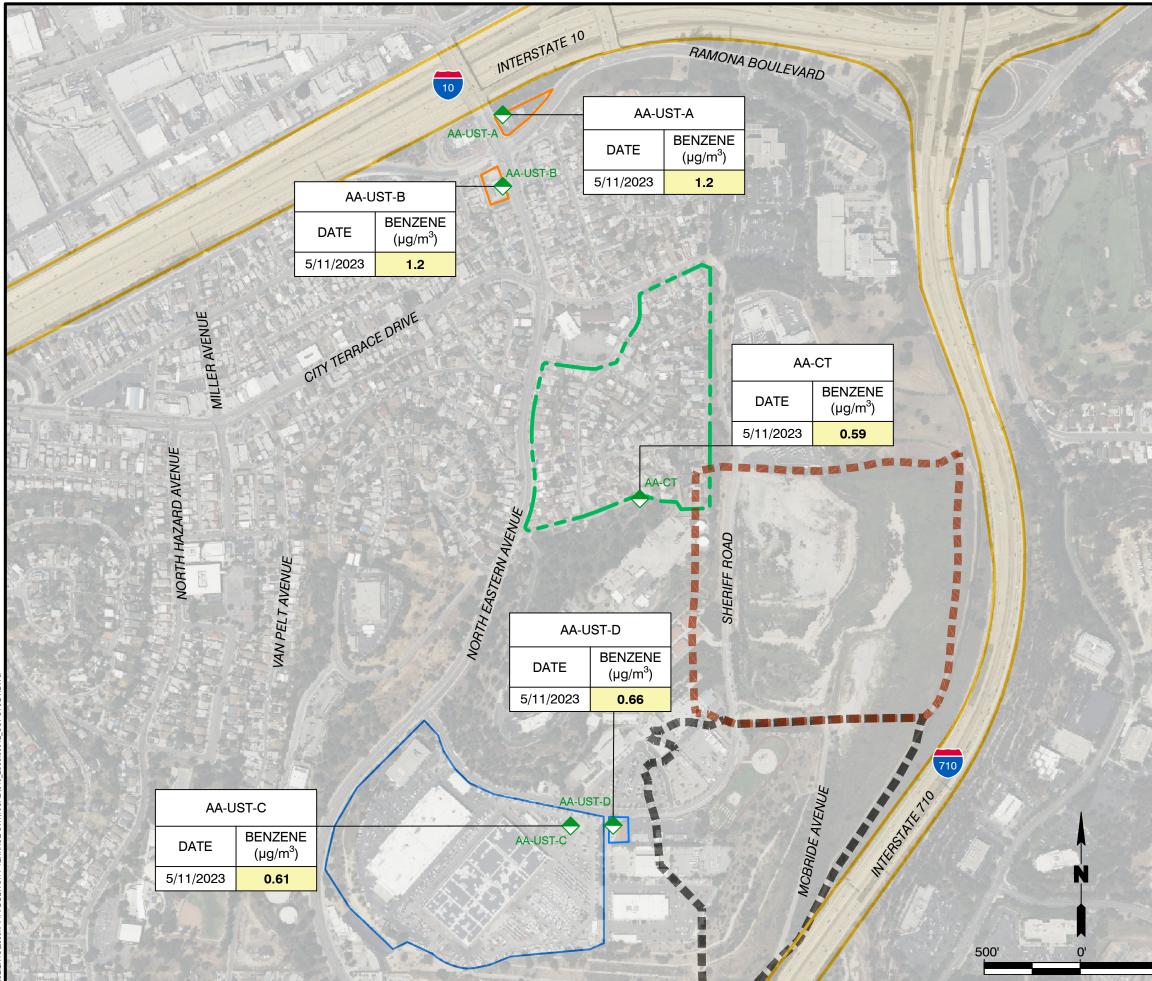




| Compiled by: C.J.             | Date: 8 JUNE 2023            | FIGURE |
|-------------------------------|------------------------------|--------|
| Prepared by: T.C.             | Scale: 1" = 800'             |        |
| Project Mgr: A.M.             | Project: 2855.0004           | 3      |
| File: 017_2855.0004L_PRELIMIN | IARY ATTRIBUTION RESULTS.DWG | -      |

|                     |                  |                                               |                                 |          |                             | (AD)    | -                                           |      |                          |                                                         | 11                                      |                                    |
|---------------------|------------------|-----------------------------------------------|---------------------------------|----------|-----------------------------|---------|---------------------------------------------|------|--------------------------|---------------------------------------------------------|-----------------------------------------|------------------------------------|
| NULTRI              |                  |                                               |                                 |          |                             |         |                                             | D    |                          | AA-710/10<br>MINIMUM<br>TRAFFIC<br>(µg/m <sup>3</sup> ) | PEAK<br>TRAFFIC<br>(µg/m <sup>3</sup> ) | Canal S                            |
| Nor                 | TU               | - terrest                                     | 1 in                            | 2019 - 2 | SK                          | 1       |                                             | 4/7  | /2023                    | (µg/m)<br><b>1.4</b>                                    | (µg/m)<br><b>1.9</b>                    |                                    |
| Find and the second | and P            | de la casa                                    | 01-23                           |          | 115                         |         | a Derte                                     | 4/12 | 2/2023                   | 0.39                                                    | NS                                      |                                    |
| A Charles           | 31-13            |                                               | 2                               | 1        |                             | Childe  |                                             | 4/18 | 3/2023                   | 0.58                                                    | 1.2                                     |                                    |
| LAND HALL           |                  | 1                                             |                                 |          | El Correll                  | 123     | .20                                         | 4/26 | 6/2023                   | NS                                                      | 1.2                                     |                                    |
|                     | INT              | ERSTATE 10                                    |                                 |          |                             |         |                                             | 1    |                          | I                                                       |                                         |                                    |
|                     |                  | AA-10                                         | 1. Contraction of the           |          | 10.0                        | HA      | - All                                       |      |                          | 1 4.4                                                   |                                         |                                    |
|                     |                  | MINIMUM                                       | PEAK                            |          |                             | 17811   |                                             | 5    |                          | AA-7                                                    | I                                       |                                    |
| AA-10               | DATE<br>4/7/2023 | TRAFFIC<br>(μg/m <sup>3</sup> )<br><b>1.8</b> | TRAFFIC<br>(µg/m <sup>3</sup> ) |          |                             |         |                                             |      | DATE                     | MININ<br>TRAF<br>(µg/i                                  | FIC TR                                  | EAK<br>AFFIC<br>g/m <sup>3</sup> ) |
| THE IN AND A        | 4/12/2023        | 0.39                                          | 1.4<br>1.1                      | 1.00     |                             |         | 3500                                        |      | 4/7/202                  |                                                         |                                         | 1.6                                |
|                     | 4/18/2023        | 0.44                                          | 0.85                            | - Arch   | No.                         |         | 1 A & 81                                    | 8    | 4/12/20                  | 23 <b>0.3</b>                                           | 3 <mark>3</mark>                        | NS                                 |
|                     | the frie         | 10181                                         |                                 |          |                             |         | 13 - S. |      | 4/18/20                  | 23 <b>0.5</b>                                           | 58 0                                    | ).96                               |
| (                   |                  |                                               |                                 |          | I Santa                     |         |                                             |      | 4/26/20                  | 23 NS                                                   | s C                                     | ).87                               |
|                     |                  |                                               |                                 | DATE     | AA-CT<br>MINIMUM<br>TRAFFIC | PEAK    | AA-CT                                       |      |                          | Former<br>Cogen<br>Landfill                             |                                         |                                    |
|                     |                  |                                               |                                 |          | (µg/m³)                     | (µg/m³) | 18 QQ                                       | -    |                          |                                                         |                                         |                                    |
|                     | 10.5             | a la contra                                   | 1000 / 100                      | /7/2023  | 0.86                        | 1.2     | 1 = P.4                                     |      |                          | AL                                                      |                                         |                                    |
|                     | 1                | Luna.                                         | 1000 100                        | /12/2023 | 0.36                        | NS      |                                             | S.S. | Per contra               | and and                                                 |                                         |                                    |
|                     | A start          | 1232                                          | 1.2. 1                          | /18/2023 | 0.39                        | 0.65    | and the                                     | 251  |                          | Stall.                                                  |                                         |                                    |
|                     |                  | 211                                           | 4/                              | /26/2023 | NS                          | 0.63    | A Starting                                  | 182  | 200                      |                                                         |                                         | 0,                                 |
| 500' 0' 500'        | R.               |                                               |                                 |          |                             |         | (dda)                                       |      | FORME<br>BLANCH<br>LANDF | ARD                                                     | MEST                                    | Att                                |




710/10





Compi Prepar Project ROUX

| iled by: C.J.          | Date: 8 JUN 2023 | FIGURE |
|------------------------|------------------|--------|
| red by: T.C.           | Scale: AS SHOWN  |        |
| t Mgr: A.M.            | 5                |        |
| 17_2855.0004L_PRELIMIN |                  |        |



=NTS\2855 ####| BBK CITY TEBBACE CTB\10CAD\019 2855 0004| 11ST STLIDY DW



- A. Analytical Laboratory Reports
- B. Student's t-Test Calculations

Air Quality Attribution Study Report City Terrace, East Los Angeles, California APPENDIX A

Analytical Laboratory Reports



Date of Report: 04/24/2023

April McGuire

Roux Associates, Inc -Long Beach 5150 E. Pacific Coast Hwy, Suite 450 Long Beach, CA 90804

Client Project:2855BCL Project:City TerraceBCL Work Order:2307058Invoice ID:B474166

Enclosed are the results of analyses for samples received by the laboratory on 4/8/2023. If you have any questions concerning this report, please feel free to contact me.

Revised Report: This report supercedes Report ID 1001417795

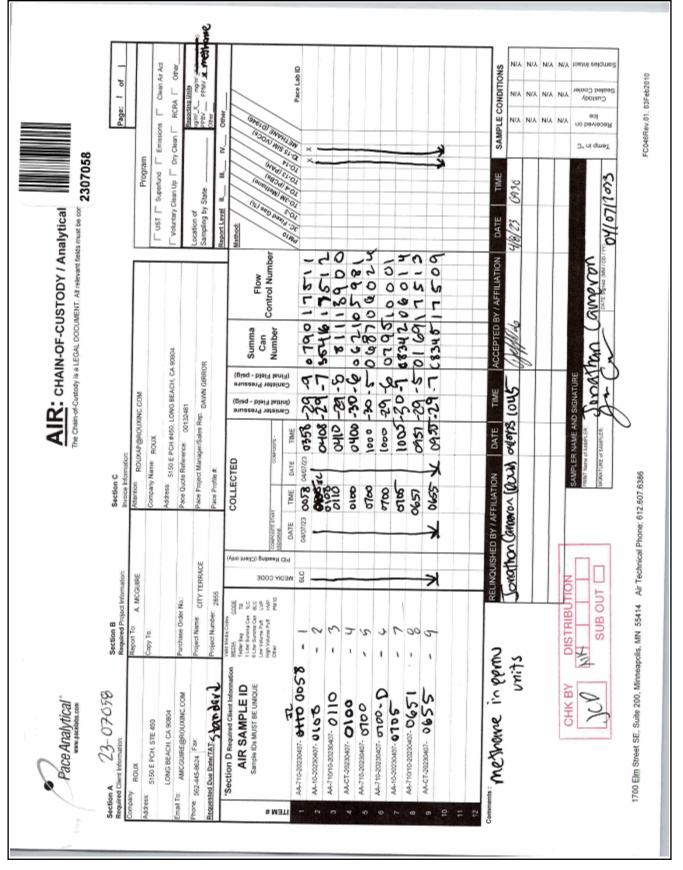
Sincerely,

Contact Person: Brianna Schutte Client Services Rep

A

Stuart Buttram Operations Manager

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101




#### **Table of Contents**

| Sample Information                                            |    |
|---------------------------------------------------------------|----|
| Chain of Custody and Cooler Receipt form                      |    |
| Laboratory / Client Sample Cross Reference                    | 5  |
| Sample Results                                                |    |
| 2307058-01 - AA-710-20230407-0058                             |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) | 7  |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307058-02 - AA-10-20230407-0108                              |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) | 10 |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307058-03 - AA-710/10-20230407-0110                          |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307058-04 - AA-CT-20230407-0100                              |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307058-05 - AA-710-20230407-0700                             |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307058-06 - AA-710-20230407-0700-D                           |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307058-07 - AA-10-20230407-0705                              |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307058-08 - AA-710/10-20230407-0651                          |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307058-09 - AA-CT-20230407-0655                              |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| Quality Control Reports                                       |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Method Blank Analysis                                         |    |
| Laboratory Control Sample                                     |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| Method Blank Analysis                                         |    |
| Laboratory Control Sample                                     |    |
| Notes                                                         |    |
| Notes and Definitions                                         |    |



#### Chain of Custody and Cooler Receipt Form for 2307058 Page 1 of 2



The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



#### Chain of Custody and Cooler Receipt Form for 2307058 Page 2 of 2

| Submission #: 23-0705                                         | 59          | COOL       | ER REC     | EIPT FO       | RM        |           | Pa           | ge_l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _Of_1                |             |
|---------------------------------------------------------------|-------------|------------|------------|---------------|-----------|-----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|
| SLUDDING IN                                                   |             |            |            |               | _         |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| SHIPPING IN<br>Fed Ex UPS II GSO<br>Pace Lab Field Service II | ORMATI      | ON         |            | 1             | SHIPP     | ING CC    | NTAINER      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ED                   | EE LIQUID   |
| Pace Lab Field Service                                        | / GLS []    | Hand D     | elivery (  | lc 🛛          | e Chest 🗆 | Non       | e 🗆 Box      | à la chuir a c | VE                   | S D NO D    |
|                                                               | other II (S | pecify)_   |            | _ 1           | Other 🗆   | (Specify) | )            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |             |
| Refrigerant: Ice Blue Ice None C Other C Community W / S      |             |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
|                                                               |             | ne 🖒       | Other E    | Com           | ments:    |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| Custody Seals Ice Chest                                       | Con         | ainers (   | ) No       | nobec         | omments   | :         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| All samples received? Yes No                                  |             | es D No I  | ຍ          |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
|                                                               |             | ples conta | iners Inta | t? Yes        | No 🖂      | D         | escription(: | ) match                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COC2 Yes             | No CI       |
| COC Received                                                  | Emissivity  |            | Contain    | er: Sum       | Thermo    | amoles ID |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| YES DNO                                                       |             |            | 1          |               |           |           |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dato/Time            | 1/8/23      |
|                                                               | Temperat    | are: (A)_  | Kcor       | 1 <u>.</u> .c | / (0)     | 1 cmp     | /°c          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alvet Init           | JCN 0930    |
|                                                               |             |            |            |               | -         |           | _            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | analyse mine 1       | 100 000     |
| SAMPLE CONTAINERS                                             |             | T          |            |               |           | MPLE NUM  | ABERS        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| TPEUNPRES                                                     |             |            |            |               |           |           | 6            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                    | 9 10        |
| z/8az/16oz PE UNPRES                                          |             | -1         | _          |               |           | _         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| « Cr**                                                        |             |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| FINORGANIC CHEMICAL METALS                                    |             |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| OPCINIC CHEMICAL METALS                                       |             |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| ORGANIC CHEMICAL METALS 402/ Sar/                             | 1622        |            |            | _             |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| CYANIDE                                                       |             |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| NITROGEN FORMS                                                | _           |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| TOTAL SULFIDE                                                 |             |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| NITRATE / NITRITE                                             |             |            | 1          |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| TOTAL ORGANIC CARBON                                          |             | _          |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| CITEMUCAL ONVGEN DEMAND                                       |             |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| PHENOLICS                                                     |             | _          |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| VOA VIAL TRAVEL BLANK                                         |             |            |            |               | _         |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| I VOA VIAL                                                    |             |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| EPA 16648                                                     | -           |            |            | +             |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| ODOR                                                          | _           |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| NOLOGICAL                                                     |             |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
|                                                               | _           |            |            | _             |           | _         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| TERIOLOGICAL                                                  |             |            | _          |               |           | _         |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |             |
| IVOA VIAL- 504                                                |             |            | _          |               |           | 1         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| EPA 508/608.3/8081A                                           |             |            |            |               |           |           |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |             |
| EPA 515.1/8151A                                               |             |            |            |               |           |           |              | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |             |
| EPA 525,2                                                     |             |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| PA 525,2 TRAVEL BLANK                                         |             |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| EPA 547                                                       |             |            |            | 1             |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                    |             |
| EPA 531.1                                                     |             | 1 -        |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| PA 548.1                                                      | -           |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| PA 549.2                                                      |             |            |            |               |           | _         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| PA 8015h1                                                     |             |            |            |               |           | 1         |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |             |
|                                                               |             |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| PA 8270C                                                      |             |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| IGER/3202 AMBER                                               |             |            |            |               |           |           |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |             |
| 6az/32oz JAR                                                  |             |            |            |               |           |           |              | -i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |             |
| SLEEVE                                                        | _           |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | _ l         |
| JAL                                                           |             | -          |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| TICBAG                                                        | 1           |            |            |               |           | 1         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| ARBAG                                                         |             |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| OUS IRON                                                      |             | 1          | 1          |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| RE                                                            | 1           |            |            |               | 1         |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| TKIT                                                          |             |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| A CANISTER                                                    | -           | 1          | <u> </u>   |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
|                                                               | 14          | LA         | ⊥ A        | L <u>A</u>    | A         | A         | 1            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                    |             |
| Numbering Completed By: 10                                    | <u> </u>    |            |            |               | hales     |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
| ual / C = Corrected                                           |             |            | Date       | Time: 4       | 18/27     | 1020      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rev<br>AB_DOCSIFORMS | 23 45/20/22 |
| and the Corrected                                             |             |            |            |               |           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 04/24/2023 10:54 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

#### Laboratory / Client Sample Cross Reference

| Laboratory | Client Sample Informati | on                      |                |                  |
|------------|-------------------------|-------------------------|----------------|------------------|
| 2307058-01 | COC Number:             |                         | Receive Date:  | 04/08/2023 09:30 |
|            | Project Number:         |                         | Sampling Date: | 04/07/2023 03:58 |
|            | Sampling Location:      |                         | Sample Depth:  |                  |
|            | Sampling Point:         | AA-710-20230407-0058    | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                  | Sample Type:   | Vapor or Air     |
| 2307058-02 | COC Number:             |                         | Receive Date:  | 04/08/2023 09:30 |
|            | Project Number:         |                         | Sampling Date: | 04/07/2023 04:08 |
|            | Sampling Location:      |                         | Sample Depth:  |                  |
|            | Sampling Point:         | AA-10-20230407-0108     | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                  | Sample Type:   | Vapor or Air     |
| 2307058-03 | COC Number:             |                         | Receive Date:  | 04/08/2023 09:30 |
|            | Project Number:         |                         | Sampling Date: | 04/07/2023 04:10 |
|            | Sampling Location:      |                         | Sample Depth:  |                  |
|            | Sampling Point:         | AA-710/10-20230407-0110 | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                  | Sample Type:   | Vapor or Air     |
| 2307058-04 | COC Number:             |                         | Receive Date:  | 04/08/2023 09:30 |
|            | Project Number:         |                         | Sampling Date: | 04/07/2023 04:00 |
|            | Sampling Location:      |                         | Sample Depth:  |                  |
|            | Sampling Point:         | AA-CT-20230407-0100     | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                  | Sample Type:   | Vapor or Air     |
| 2307058-05 | COC Number:             |                         | Receive Date:  | 04/08/2023 09:30 |
|            | Project Number:         |                         | Sampling Date: | 04/07/2023 10:00 |
|            | Sampling Location:      |                         | Sample Depth:  |                  |
|            | Sampling Point:         | AA-710-20230407-0700    | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                  | Sample Type:   | Vapor or Air     |
| 2307058-06 | COC Number:             |                         | Receive Date:  | 04/08/2023 09:30 |
|            | Project Number:         |                         | Sampling Date: | 04/07/2023 10:00 |
|            | Sampling Location:      |                         | Sample Depth:  |                  |
|            | Sampling Point:         | AA-710-20230407-0700-D  | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                  | Sample Type:   | Vapor or Air     |
| 2307058-07 | COC Number:             |                         | Receive Date:  | 04/08/2023 09:30 |
|            | Project Number:         |                         | Sampling Date: | 04/07/2023 10:05 |
|            | Sampling Location:      |                         | Sample Depth:  |                  |
|            | Sampling Point:         | AA-10-20230407-0705     | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                  | Sample Type:   | Vapor or Air     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:04/24/2023 10:54Project:City TerraceProject Number:2855Project Manager:April McGuire

#### Laboratory / Client Sample Cross Reference

| Laboratory Client Sample Inform | nation                  |                |                  |
|---------------------------------|-------------------------|----------------|------------------|
| 2307058-08 COC Number:          |                         | Receive Date:  | 04/08/2023 09:30 |
| Project Number:                 |                         | Sampling Date: | 04/07/2023 09:51 |
| Sampling Location:              |                         | Sample Depth:  |                  |
| Sampling Point:                 | AA-710/10-20230407-0651 | Lab Matrix:    | Air              |
| Sampled By:                     | Client                  | Sample Type:   | Vapor or Air     |
| 2307058-09 COC Number:          |                         | Receive Date:  | 04/08/2023 09:30 |
| Project Number:                 |                         | Sampling Date: | 04/07/2023 09:55 |
| Sampling Location:              |                         | Sample Depth:  |                  |
| Sampling Point:                 | AA-CT-20230407-0655     | Lab Matrix:    | Air              |
| Sampled By:                     | Client                  | Sample Type:   | Vapor or Air     |



Reported:04/24/2023 10:54Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307058-0              | 01 Client Sample | e Name: | AA-710-2     | A-710-20230407-0058, 4/7/2023 3:58:00AM, Client |               |            |              |     |  |  |
|---------------------------------------|------------------|---------|--------------|-------------------------------------------------|---------------|------------|--------------|-----|--|--|
| Constituent                           | Result           | Units   | PQL          | MDL                                             | Method        | MB<br>Bias | Lab<br>Quals | DCN |  |  |
| Acetone                               | 11               | ug/m3   | 10           | 0.075                                           | EPA-TO-15-SIM | ND         | A01          | 1   |  |  |
| Benzene                               | 1.4              | ug/m3   | 0.050        | 0.0032                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Benzyl chloride                       | ND               | ug/m3   | 0.50         | 0.0052                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Carbon tetrachloride                  | ND               | ug/m3   | 0.20         | 0.0063                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Chlorobenzene                         | ND               | ug/m3   | 0.10         | 0.0079                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Chloroform                            | ND               | ug/m3   | 0.050        | 0.0058                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| 1,2-Dibromoethane                     | ND               | ug/m3   | 0.20         | 0.014                                           | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| 1,2-Dichlorobenzene                   | ND               | ug/m3   | 0.20         | 0.011                                           | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| 1,3-Dichlorobenzene                   | ND               | ug/m3   | 0.20         | 0.013                                           | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| 1,4-Dichlorobenzene                   | ND               | ug/m3   | 0.20         | 0.016                                           | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Dichlorodifluoromethane               | 2.9              | ug/m3   | 0.50         | 0.052                                           | EPA-TO-15-SIM | ND         | A01          | 1   |  |  |
| 1,1-Dichloroethane                    | ND               | ug/m3   | 0.050        | 0.0041                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| 1,2-Dichloroethane                    | ND               | ug/m3   | 0.10         | 0.0046                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| I,1-Dichloroethene                    | ND               | ug/m3   | 0.050        | 0.0078                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| cis-1,2-Dichloroethene                | ND               | ug/m3   | 0.050        | 0.0044                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| rans-1,2-Dichloroethene               | ND               | ug/m3   | 0.050        | 0.0075                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| rans-1,3-Dichloropropene              | ND               | ug/m3   | 0.050        | 0.013                                           | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| 1,1-Difluoroethane                    | 1.3              | ug/m3   | 5.0          | 0.0027                                          | EPA-TO-15-SIM | ND         | J            | 2   |  |  |
| Ethylbenzene                          | 0.56             | ug/m3   | 0.050        | 0.017                                           | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Methylene chloride                    | ND               | ug/m3   | 0.20         | 0.0077                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Tetrachloroethene                     | ND               | ug/m3   | 0.10         | 0.011                                           | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Foluene                               | 2.9              | ug/m3   | 1.0          | 0.062                                           | EPA-TO-15-SIM | ND         | A01          | 1   |  |  |
| I,1,1-Trichloroethane                 | ND               | ug/m3   | 0.10         | 0.0055                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| 1,1,2-Trichloroethane                 | ND               | ug/m3   | 0.10         | 0.0055                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Trichloroethene                       | ND               | ug/m3   | 0.10         | 0.0095                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Frichlorofluoromethane                | 1.5              | ug/m3   | 0.050        | 0.0057                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.66             | ug/m3   | 0.10         | 0.0078                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| /inyl chloride                        | ND               | ug/m3   | 0.020        | 0.0046                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| o- & m-Xylenes                        | 2.4              | ug/m3   | 0.050        | 0.0082                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| o-Xylene                              | 0.81             | ug/m3   | 0.050        | 0.0044                                          | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Fotal Xylenes                         | 3.2              | ug/m3   | 0.10         | 0.013                                           | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| 4-Bromofluorobenzene (Surrogate)      | 90.8             | %       | 50 - 150 (LC | L - UCL)                                        | EPA-TO-15-SIM |            |              | 1   |  |  |
| 4-Bromofluorobenzene (Surrogate)      | 106              | %       | 50 - 150 (LC | L - UCL)                                        | EPA-TO-15-SIM |            |              | 2   |  |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report apply to the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Alto Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:04/24/2023 10:54Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample II | <b>D:</b> 2307058-01 | Client San     | nple Name:     | AA-710-20230 | 0407-0058, 4/7/2 | 2023 3:58:00 | 0AM, Client |           |
|---------------|----------------------|----------------|----------------|--------------|------------------|--------------|-------------|-----------|
|               |                      |                | Run            |              |                  |              | QC          |           |
| DCN           | Method               | Prep Date      | Date/Time      | Analyst      | Instrument       | Dilution     | Batch ID    |           |
| 1             | EPA-TO-15-SIM        | 04/10/23 13:17 | 04/11/23 03:12 | BEP          | MS-A1            | 10           | B163730     | EPA TO-15 |
| 2             | EPA-TO-15-SIM        | 04/10/23 13:17 | 04/10/23 21:50 | BEP          | MS-A1            | 1            | B163730     | EPA TO-15 |



Reported:04/24/2023 10:54Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307058-01 | Client Sampl | e Name: | AA-710-20 | 0230407-0 | 058, 4/7/2023 | 3:58:00AM, Clie | ent          |     |
|----------------|------------|--------------|---------|-----------|-----------|---------------|-----------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL       | MDL       | Method        | MB<br>Bias      | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 31           | ppmv    | 2.0       | 1.8       | ASTM-D1946    | ND              |              | 1   |

|     |            |                | Run            |         |            | QC       |          |             |  |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|--|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |  |
| 1   | ASTM-D1946 | 04/10/23 08:04 | 04/10/23 17:01 | RMK     | GC-A1      | 1        | B163715  | No Prep     |  |



Reported:04/24/202310:54Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 230              | 07058-02 Cli | ent Sample | e Name: | AA-10-202    | 230407-010 | 08, 4/7/2023 4:08 | :00AM, Clie | nt           |     |
|---------------------------------|--------------|------------|---------|--------------|------------|-------------------|-------------|--------------|-----|
| Constituent                     |              | Result     | Units   | PQL          | MDL        | Method            | MB<br>Bias  | Lab<br>Quals | DCN |
| Acetone                         | •            | 29         | ug/m3   | 10           | 0.075      | EPA-TO-15-SIM     | ND          | A01          | 1   |
| Benzene                         |              | 1.8        | ug/m3   | 0.050        | 0.0032     | EPA-TO-15-SIM     | ND          |              | 2   |
| Benzyl chloride                 |              | ND         | ug/m3   | 0.50         | 0.0052     | EPA-TO-15-SIM     | ND          |              | 2   |
| Carbon tetrachloride            |              | ND         | ug/m3   | 0.20         | 0.0063     | EPA-TO-15-SIM     | ND          |              | 2   |
| Chlorobenzene                   |              | ND         | ug/m3   | 0.10         | 0.0079     | EPA-TO-15-SIM     | ND          |              | 2   |
| Chloroform                      |              | ND         | ug/m3   | 0.050        | 0.0058     | EPA-TO-15-SIM     | ND          |              | 2   |
| 1,2-Dibromoethane               |              | ND         | ug/m3   | 0.20         | 0.014      | EPA-TO-15-SIM     | ND          |              | 2   |
| 1,2-Dichlorobenzene             |              | ND         | ug/m3   | 0.20         | 0.011      | EPA-TO-15-SIM     | ND          |              | 2   |
| 1,3-Dichlorobenzene             |              | ND         | ug/m3   | 0.20         | 0.013      | EPA-TO-15-SIM     | ND          |              | 2   |
| 1,4-Dichlorobenzene             |              | ND         | ug/m3   | 0.20         | 0.016      | EPA-TO-15-SIM     | ND          |              | 2   |
| Dichlorodifluoromethane         |              | 3.2        | ug/m3   | 0.50         | 0.052      | EPA-TO-15-SIM     | ND          | A01          | 1   |
| 1,1-Dichloroethane              |              | ND         | ug/m3   | 0.050        | 0.0041     | EPA-TO-15-SIM     | ND          |              | 2   |
| 1,2-Dichloroethane              |              | ND         | ug/m3   | 0.10         | 0.0046     | EPA-TO-15-SIM     | ND          |              | 2   |
| 1,1-Dichloroethene              |              | ND         | ug/m3   | 0.050        | 0.0078     | EPA-TO-15-SIM     | ND          |              | 2   |
| cis-1,2-Dichloroethene          |              | ND         | ug/m3   | 0.050        | 0.0044     | EPA-TO-15-SIM     | ND          |              | 2   |
| rans-1,2-Dichloroethene         |              | ND         | ug/m3   | 0.050        | 0.0075     | EPA-TO-15-SIM     | ND          |              | 2   |
| trans-1,3-Dichloropropene       |              | ND         | ug/m3   | 0.050        | 0.013      | EPA-TO-15-SIM     | ND          |              | 2   |
| 1,1-Difluoroethane              |              | 1.8        | ug/m3   | 50           | 0.027      | EPA-TO-15-SIM     | ND          | J,A01        | 1   |
| Ethylbenzene                    |              | 1.0        | ug/m3   | 0.050        | 0.017      | EPA-TO-15-SIM     | ND          |              | 2   |
| Methylene chloride              |              | ND         | ug/m3   | 0.20         | 0.0077     | EPA-TO-15-SIM     | ND          |              | 2   |
| Tetrachloroethene               |              | ND         | ug/m3   | 0.10         | 0.011      | EPA-TO-15-SIM     | ND          |              | 2   |
| Foluene                         |              | 5.3        | ug/m3   | 1.0          | 0.062      | EPA-TO-15-SIM     | ND          | A01          | 1   |
| 1,1,1-Trichloroethane           |              | ND         | ug/m3   | 0.10         | 0.0055     | EPA-TO-15-SIM     | ND          |              | 2   |
| 1,1,2-Trichloroethane           |              | ND         | ug/m3   | 0.10         | 0.0055     | EPA-TO-15-SIM     | ND          |              | 2   |
| Trichloroethene                 |              | ND         | ug/m3   | 0.10         | 0.0095     | EPA-TO-15-SIM     | ND          |              | 2   |
| Trichlorofluoromethane          |              | 1.5        | ug/m3   | 0.050        | 0.0057     | EPA-TO-15-SIM     | ND          |              | 2   |
| 1,1,2-Trichloro-1,2,2-trifluoro | ethane       | 0.66       | ug/m3   | 0.10         | 0.0078     | EPA-TO-15-SIM     | ND          |              | 2   |
| Vinyl chloride                  |              | ND         | ug/m3   | 0.020        | 0.0046     | EPA-TO-15-SIM     | ND          |              | 2   |
| p- & m-Xylenes                  |              | 4.4        | ug/m3   | 0.050        | 0.0082     | EPA-TO-15-SIM     | ND          |              | 2   |
| o-Xylene                        |              | 1.4        | ug/m3   | 0.050        | 0.0044     | EPA-TO-15-SIM     | ND          |              | 2   |
| Total Xylenes                   |              | 5.9        | ug/m3   | 0.10         | 0.013      | EPA-TO-15-SIM     | ND          |              | 2   |
| 4-Bromofluorobenzene (Surro     | gate)        | 93.9       | %       | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM     |             |              | 1   |
| 4-Bromofluorobenzene (Surro     | gate)        | 105        | %       | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM     |             |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1001418032 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:04/24/202310:54Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2307058-02    | Client San     | nple Name:     | AA-10-202304 | 407-0108, 4/7/20 | 07-0108, 4/7/2023 4:08:00AM, Client |          |           |  |
|---------------|---------------|----------------|----------------|--------------|------------------|-------------------------------------|----------|-----------|--|
|               |               | -              | Run            |              |                  |                                     | QC       |           |  |
| DCN           | Method        | Prep Date      | Date/Time      | Analyst      | Instrument       | Dilution                            | Batch ID |           |  |
| 1             | EPA-TO-15-SIM | 04/10/23 13:17 | 04/11/23 03:42 | BEP          | MS-A1            | 10                                  | B163730  | EPA TO-15 |  |
| 2             | EPA-TO-15-SIM | 04/10/23 13:17 | 04/10/23 22:26 | BEP          | MS-A1            | 1                                   | B163730  | EPA TO-15 |  |



Reported: 04/24/2023 10:54 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307058-02 | Client Sampl | e Name: | AA-10-202 | 230407-01 | 08, 4/7/2023 | 4:08:00AM, Client |              |     |
|----------------|------------|--------------|---------|-----------|-----------|--------------|-------------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL       | MDL       | Method       | MB<br>Bias        | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 2.3          | ppmv    | 2.0       | 1.8       | ASTM-D1946   | ND                |              | 1   |

|     |            |                | Run            |         |            | QC       |          |             |  |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|--|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |  |
| 1   | ASTM-D1946 | 04/10/23 08:04 | 04/10/23 17:21 | RMK     | GC-A1      | 1        | B163715  | No Prep     |  |



Reported:04/24/202310:54Project:City TerraceProject Number:2855Project Manager:April McGuire

#### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23               | 07058-03 | Client Sampl | e Name: | AA-710/10    | 0-2023040 | 7-0110, 4/7/2023 |            |              |     |
|---------------------------------|----------|--------------|---------|--------------|-----------|------------------|------------|--------------|-----|
| Constituent                     |          | Result       | Units   | PQL          | MDL       | Method           | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                         |          | 13           | ug/m3   | 10           | 0.075     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| Benzene                         |          | 1.4          | ug/m3   | 0.050        | 0.0032    | EPA-TO-15-SIM    | ND         |              | 2   |
| Benzyl chloride                 |          | ND           | ug/m3   | 0.50         | 0.0052    | EPA-TO-15-SIM    | ND         |              | 2   |
| Carbon tetrachloride            |          | ND           | ug/m3   | 0.20         | 0.0063    | EPA-TO-15-SIM    | ND         |              | 2   |
| Chlorobenzene                   |          | ND           | ug/m3   | 0.10         | 0.0079    | EPA-TO-15-SIM    | ND         |              | 2   |
| Chloroform                      |          | ND           | ug/m3   | 0.050        | 0.0058    | EPA-TO-15-SIM    | ND         |              | 2   |
| ,2-Dibromoethane                |          | ND           | ug/m3   | 0.20         | 0.014     | EPA-TO-15-SIM    | ND         |              | 2   |
| ,2-Dichlorobenzene              |          | ND           | ug/m3   | 0.20         | 0.011     | EPA-TO-15-SIM    | ND         |              | 2   |
| ,3-Dichlorobenzene              |          | ND           | ug/m3   | 0.20         | 0.013     | EPA-TO-15-SIM    | ND         |              | 2   |
| I,4-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.016     | EPA-TO-15-SIM    | ND         |              | 2   |
| Dichlorodifluoromethane         |          | 2.8          | ug/m3   | 0.50         | 0.052     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| I,1-Dichloroethane              |          | ND           | ug/m3   | 0.050        | 0.0041    | EPA-TO-15-SIM    | ND         |              | 2   |
| ,2-Dichloroethane               |          | ND           | ug/m3   | 0.10         | 0.0046    | EPA-TO-15-SIM    | ND         |              | 2   |
| I,1-Dichloroethene              |          | ND           | ug/m3   | 0.050        | 0.0078    | EPA-TO-15-SIM    | ND         |              | 2   |
| cis-1,2-Dichloroethene          |          | ND           | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM    | ND         |              | 2   |
| rans-1,2-Dichloroethene         |          | ND           | ug/m3   | 0.050        | 0.0075    | EPA-TO-15-SIM    | ND         |              | 2   |
| rans-1,3-Dichloropropene        |          | ND           | ug/m3   | 0.050        | 0.013     | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,1-Difluoroethane              |          | 1.9          | ug/m3   | 50           | 0.027     | EPA-TO-15-SIM    | ND         | J,A01        | 1   |
| Ethylbenzene                    |          | 0.70         | ug/m3   | 0.050        | 0.017     | EPA-TO-15-SIM    | ND         |              | 2   |
| Methylene chloride              |          | ND           | ug/m3   | 0.20         | 0.0077    | EPA-TO-15-SIM    | ND         |              | 2   |
| Fetrachloroethene               |          | ND           | ug/m3   | 0.10         | 0.011     | EPA-TO-15-SIM    | ND         |              | 2   |
| Toluene                         |          | 3.5          | ug/m3   | 1.0          | 0.062     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| 1,1,1-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,1,2-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM    | ND         |              | 2   |
| Trichloroethene                 |          | ND           | ug/m3   | 0.10         | 0.0095    | EPA-TO-15-SIM    | ND         |              | 2   |
| Frichlorofluoromethane          |          | 1.4          | ug/m3   | 0.050        | 0.0057    | EPA-TO-15-SIM    | ND         |              | 2   |
| I,1,2-Trichloro-1,2,2-trifluoro | ethane   | 0.63         | ug/m3   | 0.10         | 0.0078    | EPA-TO-15-SIM    | ND         |              | 2   |
| /inyl chloride                  |          | ND           | ug/m3   | 0.020        | 0.0046    | EPA-TO-15-SIM    | ND         |              | 2   |
| o- & m-Xylenes                  |          | 2.8          | ug/m3   | 0.050        | 0.0082    | EPA-TO-15-SIM    | ND         |              | 2   |
| o-Xylene                        |          | 0.90         | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM    | ND         |              | 2   |
| Fotal Xylenes                   |          | 3.7          | ug/m3   | 0.10         | 0.013     | EPA-TO-15-SIM    | ND         |              | 2   |
| 4-Bromofluorobenzene (Surro     | gate)    | 89.7         | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM    |            |              | 1   |
| 4-Bromofluorobenzene (Surro     | gate)    | 103          | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM    |            |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

An results inseed in this report are for the exclusive use of the submitting party. Tace Anarytical assumes in responsionity for report are ration, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separatio, determine assumes in responsion in report are ratio, separatio, determine assumes in responsion in report are ratio, separatio, determine assumes in report are ratio, separating are rating are ratio, separating are rat



Reported:04/24/202310:54Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307058-03 Client Sample Name: |               |                |                | AA-710/10-20 | 230407-0110, 4 | /7/2023 4:10 | 0:00AM, Clie | nt        |
|-----------------------------------------------|---------------|----------------|----------------|--------------|----------------|--------------|--------------|-----------|
|                                               |               | -              | Run            |              |                |              | QC           |           |
| DCN                                           | Method        | Prep Date      | Date/Time      | Analyst      | Instrument     | Dilution     | Batch ID     |           |
| 1                                             | EPA-TO-15-SIM | 04/10/23 13:17 | 04/11/23 04:13 | BEP          | MS-A1          | 10           | B163730      | EPA TO-15 |
| 2                                             | EPA-TO-15-SIM | 04/10/23 13:17 | 04/10/23 23:03 | BEP          | MS-A1          | 1            | B163730      | EPA TO-15 |



Reported: 04/24/2023 10:54 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307058-03 | Client Sample Name: AA-710/10-20230407-0110, 4/7/2023 4 |       |     |     | 4:10:00AM, Client |            |              |     |
|----------------|------------|---------------------------------------------------------|-------|-----|-----|-------------------|------------|--------------|-----|
| Constituent    |            | Result                                                  | Units | PQL | MDL | Method            | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 6.0                                                     | ppmv  | 2.0 | 1.8 | ASTM-D1946        | ND         |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/10/23 08:04 | 04/10/23 17:41 | RMK     | GC-A1      | 1        | B163715  | No Prep     |



Reported:04/24/2023 10:54Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23              | 307058-04 | Client Sampl | e Name: | AA-CT-20     | 230407-01 | 00, 4/7/2023 4:0 | 0:00AM, Clie | ent          |     |
|--------------------------------|-----------|--------------|---------|--------------|-----------|------------------|--------------|--------------|-----|
| Constituent                    |           | Result       | Units   | PQL          | MDL       | Method           | MB<br>Bias   | Lab<br>Quals | DCN |
| Acetone                        |           | 15           | ug/m3   | 10           | 0.075     | EPA-TO-15-SIM    | Bias<br>ND   | Quals<br>A01 | 1   |
| Benzene                        |           | 0.86         | ug/m3   | 0.050        | 0.0032    | EPA-TO-15-SIM    | ND           |              | 2   |
| Benzyl chloride                |           | ND           | ug/m3   | 0.50         | 0.0052    | EPA-TO-15-SIM    | ND           |              | 2   |
| Carbon tetrachloride           |           | ND           | ug/m3   | 0.20         | 0.0063    | EPA-TO-15-SIM    | ND           |              | 2   |
| Chlorobenzene                  |           | ND           | ug/m3   | 0.10         | 0.0079    | EPA-TO-15-SIM    | ND           |              | 2   |
| Chloroform                     |           | ND           | ug/m3   | 0.050        | 0.0058    | EPA-TO-15-SIM    | ND           |              | 2   |
| I,2-Dibromoethane              |           | ND           | ug/m3   | 0.20         | 0.014     | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,2-Dichlorobenzene            |           | ND           | ug/m3   | 0.20         | 0.011     | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,3-Dichlorobenzene            |           | ND           | ug/m3   | 0.20         | 0.013     | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,4-Dichlorobenzene            |           | ND           | ug/m3   | 0.20         | 0.016     | EPA-TO-15-SIM    | ND           |              | 2   |
| Dichlorodifluoromethane        |           | 2.8          | ug/m3   | 0.50         | 0.052     | EPA-TO-15-SIM    | ND           | A01          | 1   |
| I,1-Dichloroethane             |           | ND           | ug/m3   | 0.050        | 0.0041    | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,2-Dichloroethane             |           | ND           | ug/m3   | 0.10         | 0.0046    | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,1-Dichloroethene             |           | ND           | ug/m3   | 0.050        | 0.0078    | EPA-TO-15-SIM    | ND           |              | 2   |
| cis-1,2-Dichloroethene         |           | ND           | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM    | ND           |              | 2   |
| rans-1,2-Dichloroethene        |           | ND           | ug/m3   | 0.050        | 0.0075    | EPA-TO-15-SIM    | ND           |              | 2   |
| rans-1,3-Dichloropropene       |           | ND           | ug/m3   | 0.050        | 0.013     | EPA-TO-15-SIM    | ND           |              | 2   |
| I,1-Difluoroethane             |           | 1.2          | ug/m3   | 5.0          | 0.0027    | EPA-TO-15-SIM    | ND           | J            | 2   |
| Ethylbenzene                   |           | 0.40         | ug/m3   | 0.050        | 0.017     | EPA-TO-15-SIM    | ND           |              | 2   |
| Methylene chloride             |           | ND           | ug/m3   | 2.0          | 0.077     | EPA-TO-15-SIM    | ND           | A01          | 1   |
| Tetrachloroethene              |           | ND           | ug/m3   | 0.10         | 0.011     | EPA-TO-15-SIM    | ND           |              | 2   |
| Foluene                        |           | 2.0          | ug/m3   | 1.0          | 0.062     | EPA-TO-15-SIM    | ND           | A01          | 1   |
| 1,1,1-Trichloroethane          |           | ND           | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,1,2-Trichloroethane          |           | ND           | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM    | ND           |              | 2   |
| Trichloroethene                |           | ND           | ug/m3   | 0.10         | 0.0095    | EPA-TO-15-SIM    | ND           |              | 2   |
| Trichlorofluoromethane         |           | 1.5          | ug/m3   | 0.050        | 0.0057    | EPA-TO-15-SIM    | ND           |              | 2   |
| I,1,2-Trichloro-1,2,2-trifluor | oethane   | 0.66         | ug/m3   | 0.10         | 0.0078    | EPA-TO-15-SIM    | ND           |              | 2   |
| /inyl chloride                 |           | ND           | ug/m3   | 0.020        | 0.0046    | EPA-TO-15-SIM    | ND           |              | 2   |
| o- & m-Xylenes                 |           | 1.6          | ug/m3   | 0.050        | 0.0082    | EPA-TO-15-SIM    | ND           |              | 2   |
| o-Xylene                       |           | 0.54         | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM    | ND           |              | 2   |
| Total Xylenes                  |           | 2.1          | ug/m3   | 0.10         | 0.013     | EPA-TO-15-SIM    | ND           |              | 2   |
| 4-Bromofluorobenzene (Surr     | rogate)   | 90.5         | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM    |              |              | 1   |
| 4-Bromofluorobenzene (Surr     | ogate)    | 109          | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM    |              |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

An results hadd in this report and to the exclusive use of the storming party. Face Analytical assumes to responsibility for report and anon, separation, detailing https://www.pacelabs.com



Reported:04/24/202310:54Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307058-04 Client S |               |                | nple Name:     | AA-CT-202304 | 407-0100, 4/7/20 | 023 4:00:00 | AM, Client |           |
|------------------------------------|---------------|----------------|----------------|--------------|------------------|-------------|------------|-----------|
|                                    |               | -              | Run            |              |                  |             | QC         |           |
| DCN                                | Method        | Prep Date      | Date/Time      | Analyst      | Instrument       | Dilution    | Batch ID   |           |
| 1                                  | EPA-TO-15-SIM | 04/10/23 13:17 | 04/11/23 04:43 | BEP          | MS-A1            | 10          | B163730    | EPA TO-15 |
| 2                                  | EPA-TO-15-SIM | 04/10/23 13:17 | 04/10/23 23:39 | BEP          | MS-A1            | 1           | B163730    | EPA TO-15 |



Reported:04/24/2023 10:54Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307058-04 | Client Sampl | lient Sample Name: AA-CT-20230407-0100, 4/7/2023 |     |     |            | 4:00:00AM, Client |              |     |
|----------------|------------|--------------|--------------------------------------------------|-----|-----|------------|-------------------|--------------|-----|
| Constituent    |            | Result       | Units                                            | PQL | MDL | Method     | MB<br>Bias        | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 5.2          | ppmv                                             | 2.0 | 1.8 | ASTM-D1946 | ND                |              | 1   |

|     |            |                | Run            |         |            |          | QC       |             |  |  |  |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|--|--|--|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |  |  |  |
| 1   | ASTM-D1946 | 04/10/23 08:04 | 04/10/23 18:02 | RMK     | GC-A1      | 1        | B163715  | No Prep     |  |  |  |



Reported:04/24/202310:54Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307058-               | 05 Client Sample | Name: | AA-710-2     | 0230407-0 | ient          |            |              |     |
|---------------------------------------|------------------|-------|--------------|-----------|---------------|------------|--------------|-----|
| Constituent                           | Result           | Units | PQL          | MDL       | Method        | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                               | 15               | ug/m3 | 10           | 0.075     | EPA-TO-15-SIM | ND         | A01          | 1   |
| Benzene                               | 1.6              | ug/m3 | 0.050        | 0.0032    | EPA-TO-15-SIM | ND         |              | 2   |
| Benzyl chloride                       | ND               | ug/m3 | 0.50         | 0.0052    | EPA-TO-15-SIM | ND         |              | 2   |
| Carbon tetrachloride                  | ND               | ug/m3 | 0.20         | 0.0063    | EPA-TO-15-SIM | ND         |              | 2   |
| Chlorobenzene                         | ND               | ug/m3 | 0.10         | 0.0079    | EPA-TO-15-SIM | ND         |              | 2   |
| Chloroform                            | ND               | ug/m3 | 0.050        | 0.0058    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dibromoethane                     | ND               | ug/m3 | 0.20         | 0.014     | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dichlorobenzene                   | ND               | ug/m3 | 0.20         | 0.011     | EPA-TO-15-SIM | ND         |              | 2   |
| 1,3-Dichlorobenzene                   | ND               | ug/m3 | 0.20         | 0.013     | EPA-TO-15-SIM | ND         |              | 2   |
| 1,4-Dichlorobenzene                   | ND               | ug/m3 | 0.20         | 0.016     | EPA-TO-15-SIM | ND         |              | 2   |
| Dichlorodifluoromethane               | 2.9              | ug/m3 | 0.50         | 0.052     | EPA-TO-15-SIM | ND         | A01          | 1   |
| 1,1-Dichloroethane                    | ND               | ug/m3 | 0.050        | 0.0041    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dichloroethane                    | ND               | ug/m3 | 0.10         | 0.0046    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Dichloroethene                    | ND               | ug/m3 | 0.050        | 0.0078    | EPA-TO-15-SIM | ND         |              | 2   |
| cis-1,2-Dichloroethene                | ND               | ug/m3 | 0.050        | 0.0044    | EPA-TO-15-SIM | ND         |              | 2   |
| rans-1,2-Dichloroethene               | ND               | ug/m3 | 0.050        | 0.0075    | EPA-TO-15-SIM | ND         |              | 2   |
| trans-1,3-Dichloropropene             | ND               | ug/m3 | 0.050        | 0.013     | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Difluoroethane                    | 1.3              | ug/m3 | 5.0          | 0.0027    | EPA-TO-15-SIM | ND         | J            | 2   |
| Ethylbenzene                          | 0.80             | ug/m3 | 0.050        | 0.017     | EPA-TO-15-SIM | ND         |              | 2   |
| Methylene chloride                    | ND               | ug/m3 | 0.20         | 0.0077    | EPA-TO-15-SIM | ND         |              | 2   |
| Tetrachloroethene                     | ND               | ug/m3 | 0.10         | 0.011     | EPA-TO-15-SIM | ND         |              | 2   |
| Toluene                               | 3.9              | ug/m3 | 1.0          | 0.062     | EPA-TO-15-SIM | ND         | A01          | 1   |
| 1,1,1-Trichloroethane                 | ND               | ug/m3 | 0.10         | 0.0055    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1,2-Trichloroethane                 | ND               | ug/m3 | 0.10         | 0.0055    | EPA-TO-15-SIM | ND         |              | 2   |
| Trichloroethene                       | ND               | ug/m3 | 0.10         | 0.0095    | EPA-TO-15-SIM | ND         |              | 2   |
| Trichlorofluoromethane                | 1.4              | ug/m3 | 0.050        | 0.0057    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.64             | ug/m3 | 0.10         | 0.0078    | EPA-TO-15-SIM | ND         |              | 2   |
| /inyl chloride                        | ND               | ug/m3 | 0.020        | 0.0046    | EPA-TO-15-SIM | ND         |              | 2   |
| o- & m-Xylenes                        | 3.3              | ug/m3 | 0.050        | 0.0082    | EPA-TO-15-SIM | ND         |              | 2   |
| o-Xylene                              | 1.1              | ug/m3 | 0.050        | 0.0044    | EPA-TO-15-SIM | ND         |              | 2   |
| Fotal Xylenes                         | 4.4              | ug/m3 | 0.10         | 0.013     | EPA-TO-15-SIM | ND         |              | 2   |
| 4-Bromofluorobenzene (Surrogate)      | 92.7             | %     | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM |            |              | 1   |
| 4-Bromofluorobenzene (Surrogate)      | 111              | %     | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM |            |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1001418032 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 04/24/2023 10:54 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2307058-05    | AA-710-20230   | 0407-0700, 4/7/2 | 2023 10:00:0 | 0AM, Client |          |          |           |
|---------------|---------------|----------------|------------------|--------------|-------------|----------|----------|-----------|
|               |               | -              | Run              |              |             |          | QC       |           |
| DCN           | Method        | Prep Date      | Date/Time        | Analyst      | Instrument  | Dilution | Batch ID |           |
| 1             | EPA-TO-15-SIM | 04/10/23 13:17 | 04/11/23 05:13   | BEP          | MS-A1       | 10       | B163730  | EPA TO-15 |
| 2             | EPA-TO-15-SIM | 04/10/23 13:17 | 04/11/23 00:16   | BEP          | MS-A1       | 1        | B163730  | EPA TO-15 |



Reported: 04/24/2023 10:54 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307058-05 | Client Sampl | e Name: | AA-710-20 | AA-710-20230407-0700, 4/7/2023 10:00:00AM, Client |            |            |              |     |
|----------------|------------|--------------|---------|-----------|---------------------------------------------------|------------|------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL       | MDL                                               | Method     | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 19           | ppmv    | 2.0       | 1.8                                               | ASTM-D1946 | ND         |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/10/23 08:04 | 04/10/23 18:22 | RMK     | GC-A1      | 1        | B163715  | No Prep     |



Reported:04/24/202310:54Project:City TerraceProject Number:2855Project Manager:April McGuire

#### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307               | 2058-06 Client Samp | ole Name: | AA-710-2     | AA-710-20230407-0700-D, 4/7/2023 10:00:00AM, Client |               |            |              |     |
|-----------------------------------|---------------------|-----------|--------------|-----------------------------------------------------|---------------|------------|--------------|-----|
| Constituent                       | Result              | Units     | PQL          | MDL                                                 | Method        | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                           | 20                  | ug/m3     | 10           | 0.075                                               | EPA-TO-15-SIM | ND         | A01          | 1   |
| Benzene                           | 1.6                 | ug/m3     | 0.050        | 0.0032                                              | EPA-TO-15-SIM | ND         |              | 2   |
| Benzyl chloride                   | ND                  | ug/m3     | 0.50         | 0.0052                                              | EPA-TO-15-SIM | ND         |              | 2   |
| Carbon tetrachloride              | ND                  | ug/m3     | 0.20         | 0.0063                                              | EPA-TO-15-SIM | ND         |              | 2   |
| Chlorobenzene                     | ND                  | ug/m3     | 0.10         | 0.0079                                              | EPA-TO-15-SIM | ND         |              | 2   |
| Chloroform                        | ND                  | ug/m3     | 0.050        | 0.0058                                              | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dibromoethane                 | ND                  | ug/m3     | 0.20         | 0.014                                               | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dichlorobenzene               | ND                  | ug/m3     | 0.20         | 0.011                                               | EPA-TO-15-SIM | ND         |              | 2   |
| 1,3-Dichlorobenzene               | ND                  | ug/m3     | 0.20         | 0.013                                               | EPA-TO-15-SIM | ND         |              | 2   |
| 1,4-Dichlorobenzene               | ND                  | ug/m3     | 0.20         | 0.016                                               | EPA-TO-15-SIM | ND         |              | 2   |
| Dichlorodifluoromethane           | 2.9                 | ug/m3     | 0.50         | 0.052                                               | EPA-TO-15-SIM | ND         | A01          | 1   |
| 1,1-Dichloroethane                | ND                  | ug/m3     | 0.050        | 0.0041                                              | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dichloroethane                | ND                  | ug/m3     | 0.10         | 0.0046                                              | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Dichloroethene                | ND                  | ug/m3     | 0.050        | 0.0078                                              | EPA-TO-15-SIM | ND         |              | 2   |
| cis-1,2-Dichloroethene            | ND                  | ug/m3     | 0.050        | 0.0044                                              | EPA-TO-15-SIM | ND         |              | 2   |
| rans-1,2-Dichloroethene           | ND                  | ug/m3     | 0.050        | 0.0075                                              | EPA-TO-15-SIM | ND         |              | 2   |
| trans-1,3-Dichloropropene         | ND                  | ug/m3     | 0.050        | 0.013                                               | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Difluoroethane                | 1.6                 | ug/m3     | 50           | 0.027                                               | EPA-TO-15-SIM | ND         | J,A01        | 1   |
| Ethylbenzene                      | 0.82                | ug/m3     | 0.050        | 0.017                                               | EPA-TO-15-SIM | ND         |              | 2   |
| Methylene chloride                | ND                  | ug/m3     | 2.0          | 0.077                                               | EPA-TO-15-SIM | ND         | A01          | 1   |
| Tetrachloroethene                 | ND                  | ug/m3     | 0.10         | 0.011                                               | EPA-TO-15-SIM | ND         |              | 2   |
| Foluene                           | 4.4                 | ug/m3     | 1.0          | 0.062                                               | EPA-TO-15-SIM | ND         | A01          | 1   |
| 1,1,1-Trichloroethane             | ND                  | ug/m3     | 0.10         | 0.0055                                              | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1,2-Trichloroethane             | ND                  | ug/m3     | 0.10         | 0.0055                                              | EPA-TO-15-SIM | ND         |              | 2   |
| Trichloroethene                   | ND                  | ug/m3     | 0.10         | 0.0095                                              | EPA-TO-15-SIM | ND         |              | 2   |
| Trichlorofluoromethane            | 1.4                 | ug/m3     | 0.050        | 0.0057                                              | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1,2-Trichloro-1,2,2-trifluoroet | hane 0.63           | ug/m3     | 0.10         | 0.0078                                              | EPA-TO-15-SIM | ND         |              | 2   |
| /inyl chloride                    | ND                  | ug/m3     | 0.020        | 0.0046                                              | EPA-TO-15-SIM | ND         |              | 2   |
| o- & m-Xylenes                    | 3.4                 | ug/m3     | 0.050        | 0.0082                                              | EPA-TO-15-SIM | ND         |              | 2   |
| o-Xylene                          | 1.1                 | ug/m3     | 0.050        | 0.0044                                              | EPA-TO-15-SIM | ND         |              | 2   |
| Total Xylenes                     | 4.5                 | ug/m3     | 0.10         | 0.013                                               | EPA-TO-15-SIM | ND         |              | 2   |
| 4-Bromofluorobenzene (Surroga     | ate) 89.9           | %         | 50 - 150 (LC | L - UCL)                                            | EPA-TO-15-SIM |            |              | 1   |
| 4-Bromofluorobenzene (Surroga     | ate) 112            | %         | 50 - 150 (LC | L - UCL)                                            | EPA-TO-15-SIM |            |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.



Reported: 04/24/2023 10:54 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample I | BCL Sample ID: 2307058-06 Client Sample Name: |                |                | AA-710-2023 | 0407-0700-D, 4/ | 7/2023 10:00 | 0:00AM, Clie | nt        |
|--------------|-----------------------------------------------|----------------|----------------|-------------|-----------------|--------------|--------------|-----------|
|              |                                               |                | Run            |             |                 |              | QC           |           |
| DCN          | Method                                        | Prep Date      | Date/Time      | Analyst     | Instrument      | Dilution     | Batch ID     |           |
| 1            | EPA-TO-15-SIM                                 | 04/10/23 13:17 | 04/11/23 05:44 | BEP         | MS-A1           | 10           | B163730      | EPA TO-15 |
| 2            | EPA-TO-15-SIM                                 | 04/10/23 13:17 | 04/11/23 00:52 | BEP         | MS-A1           | 1            | B163730      | EPA TO-15 |



Reported: 04/24/2023 10:54 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307058-06 | Client Sampl | ple Name: AA-710-20230407-0700-D, 4/7/2023 10:00:00AM, Client |     |     |            |            |              |     |
|----------------|------------|--------------|---------------------------------------------------------------|-----|-----|------------|------------|--------------|-----|
| Constituent    |            | Result       | Units                                                         | PQL | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 2.2          | ppmv                                                          | 2.0 | 1.8 | ASTM-D1946 | ND         |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/10/23 08:04 | 04/10/23 18:42 | RMK     | GC-A1      | 1        | B163715  | No Prep     |



Reported:04/24/202310:54Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307058-07             | Client Sample | e Name: | AA-10-20     | 230407-07 | ent           |            |              |     |
|---------------------------------------|---------------|---------|--------------|-----------|---------------|------------|--------------|-----|
| Constituent                           | Result        | Units   | PQL          | MDL       | Method        | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                               | 18            | ug/m3   | 10           | 0.075     | EPA-TO-15-SIM | ND         | A01          | 1   |
| Benzene                               | 1.4           | ug/m3   | 0.050        | 0.0032    | EPA-TO-15-SIM | ND         |              | 2   |
| Benzyl chloride                       | ND            | ug/m3   | 0.50         | 0.0052    | EPA-TO-15-SIM | ND         |              | 2   |
| Carbon tetrachloride                  | ND            | ug/m3   | 0.20         | 0.0063    | EPA-TO-15-SIM | ND         |              | 2   |
| Chlorobenzene                         | ND            | ug/m3   | 0.10         | 0.0079    | EPA-TO-15-SIM | ND         |              | 2   |
| Chloroform                            | ND            | ug/m3   | 0.050        | 0.0058    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dibromoethane                     | ND            | ug/m3   | 0.20         | 0.014     | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dichlorobenzene                   | ND            | ug/m3   | 0.20         | 0.011     | EPA-TO-15-SIM | ND         |              | 2   |
| 1,3-Dichlorobenzene                   | ND            | ug/m3   | 0.20         | 0.013     | EPA-TO-15-SIM | ND         |              | 2   |
| 1,4-Dichlorobenzene                   | ND            | ug/m3   | 0.20         | 0.016     | EPA-TO-15-SIM | ND         |              | 2   |
| Dichlorodifluoromethane               | 3.3           | ug/m3   | 0.50         | 0.052     | EPA-TO-15-SIM | ND         | A01          | 1   |
| 1,1-Dichloroethane                    | ND            | ug/m3   | 0.050        | 0.0041    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dichloroethane                    | ND            | ug/m3   | 0.10         | 0.0046    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Dichloroethene                    | ND            | ug/m3   | 0.050        | 0.0078    | EPA-TO-15-SIM | ND         |              | 2   |
| cis-1,2-Dichloroethene                | ND            | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM | ND         |              | 2   |
| rans-1,2-Dichloroethene               | ND            | ug/m3   | 0.050        | 0.0075    | EPA-TO-15-SIM | ND         |              | 2   |
| trans-1,3-Dichloropropene             | ND            | ug/m3   | 0.050        | 0.013     | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Difluoroethane                    | 3.6           | ug/m3   | 50           | 0.027     | EPA-TO-15-SIM | ND         | J,A01        | 1   |
| Ethylbenzene                          | 0.63          | ug/m3   | 0.050        | 0.017     | EPA-TO-15-SIM | ND         |              | 2   |
| Methylene chloride                    | ND            | ug/m3   | 0.20         | 0.0077    | EPA-TO-15-SIM | ND         |              | 2   |
| Fetrachloroethene                     | ND            | ug/m3   | 0.10         | 0.011     | EPA-TO-15-SIM | ND         |              | 2   |
| Toluene                               | 3.6           | ug/m3   | 1.0          | 0.062     | EPA-TO-15-SIM | ND         | A01          | 1   |
| 1,1,1-Trichloroethane                 | ND            | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1,2-Trichloroethane                 | ND            | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM | ND         |              | 2   |
| Trichloroethene                       | ND            | ug/m3   | 0.10         | 0.0095    | EPA-TO-15-SIM | ND         |              | 2   |
| Trichlorofluoromethane                | 1.5           | ug/m3   | 0.050        | 0.0057    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.64          | ug/m3   | 0.10         | 0.0078    | EPA-TO-15-SIM | ND         |              | 2   |
| vinyl chloride                        | ND            | ug/m3   | 0.020        | 0.0046    | EPA-TO-15-SIM | ND         |              | 2   |
| o- & m-Xylenes                        | 2.5           | ug/m3   | 0.050        | 0.0082    | EPA-TO-15-SIM | ND         |              | 2   |
| o-Xylene                              | 0.86          | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM | ND         |              | 2   |
| Total Xylenes                         | 3.4           | ug/m3   | 0.10         | 0.013     | EPA-TO-15-SIM | ND         |              | 2   |
| 4-Bromofluorobenzene (Surrogate)      | 90.5          | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM |            |              | 1   |
| 4-Bromofluorobenzene (Surrogate)      | 108           | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM |            |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1001418032 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 04/24/2023 10:54 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2307058-07    | Client San     | nple Name:     | AA-10-202304 | 407-0705, 4/7/20 |          |          |           |
|---------------|---------------|----------------|----------------|--------------|------------------|----------|----------|-----------|
|               |               |                | Run            |              |                  |          | QC       |           |
| DCN           | Method        | Prep Date      | Date/Time      | Analyst      | Instrument       | Dilution | Batch ID |           |
| 1             | EPA-TO-15-SIM | 04/10/23 13:17 | 04/11/23 06:13 | BEP          | MS-A1            | 10       | B163730  | EPA TO-15 |
| 2             | EPA-TO-15-SIM | 04/10/23 13:17 | 04/11/23 01:29 | BEP          | MS-A1            | 1        | B163730  | EPA TO-15 |



Reported:04/24/2023 10:54Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307058-07 | Client Sampl | e Name: | AA-10-20230407-0705, 4/7/2023 10:05:00AM, Client |     |            |            |              |     |  |
|----------------|------------|--------------|---------|--------------------------------------------------|-----|------------|------------|--------------|-----|--|
| Constituent    |            | Result       | Units   | PQL                                              | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |  |
| Methane (CH4)  |            | 29           | ppmv    | 2.0                                              | 1.8 | ASTM-D1946 | ND         |              | 1   |  |

|     |            |                | Run            |         |            | QC       |          |             |  |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|--|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |  |
| 1   | ASTM-D1946 | 04/10/23 08:04 | 04/10/23 19:42 | RMK     | GC-A1      | 1        | B163715  | No Prep     |  |



Reported:04/24/202310:54Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 230              | 07058-08 | Client Sampl | e Name: | AA-710/10    | AA-710/10-20230407-0651, 4/7/2023 9:51:00AM, Client |               |            |              |                 |  |
|---------------------------------|----------|--------------|---------|--------------|-----------------------------------------------------|---------------|------------|--------------|-----------------|--|
| Constituent                     |          | Result       | Units   | PQL          | MDL                                                 | Method        | MB         | Lab          | DCN             |  |
| Acetone                         |          | 15           | ug/m3   | 10           | 0.075                                               | EPA-TO-15-SIM | Bias<br>ND | Quals<br>A01 | <u>DCN</u><br>1 |  |
| Benzene                         |          | 1.9          | ug/m3   | 0.050        | 0.0032                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| Benzyl chloride                 |          | ND           | ug/m3   | 0.50         | 0.0052                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| Carbon tetrachloride            |          | ND           | ug/m3   | 0.20         | 0.0063                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| Chlorobenzene                   |          | ND           | ug/m3   | 0.10         | 0.0079                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| Chloroform                      |          | ND           | ug/m3   | 0.050        | 0.0058                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| 1,2-Dibromoethane               |          | ND           | ug/m3   | 0.20         | 0.014                                               | EPA-TO-15-SIM | ND         |              | 2               |  |
| 1,2-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.011                                               | EPA-TO-15-SIM | ND         |              | 2               |  |
| 1,3-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.013                                               | EPA-TO-15-SIM | ND         |              | 2               |  |
| 1,4-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.016                                               | EPA-TO-15-SIM | ND         |              | 2               |  |
| Dichlorodifluoromethane         |          | 3.0          | ug/m3   | 0.50         | 0.052                                               | EPA-TO-15-SIM | ND         | A01          | 1               |  |
| 1,1-Dichloroethane              |          | ND           | ug/m3   | 0.050        | 0.0041                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| 1,2-Dichloroethane              |          | ND           | ug/m3   | 0.10         | 0.0046                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| 1,1-Dichloroethene              |          | ND           | ug/m3   | 0.050        | 0.0078                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| cis-1,2-Dichloroethene          |          | ND           | ug/m3   | 0.050        | 0.0044                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| rans-1,2-Dichloroethene         |          | ND           | ug/m3   | 0.050        | 0.0075                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| trans-1,3-Dichloropropene       |          | ND           | ug/m3   | 0.050        | 0.013                                               | EPA-TO-15-SIM | ND         |              | 2               |  |
| 1,1-Difluoroethane              |          | 1.3          | ug/m3   | 5.0          | 0.0027                                              | EPA-TO-15-SIM | ND         | J            | 2               |  |
| Ethylbenzene                    |          | 0.82         | ug/m3   | 0.050        | 0.017                                               | EPA-TO-15-SIM | ND         |              | 2               |  |
| Methylene chloride              |          | ND           | ug/m3   | 0.20         | 0.0077                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| Tetrachloroethene               |          | ND           | ug/m3   | 0.10         | 0.011                                               | EPA-TO-15-SIM | ND         |              | 2               |  |
| Foluene                         |          | 4.0          | ug/m3   | 1.0          | 0.062                                               | EPA-TO-15-SIM | ND         | A01          | 1               |  |
| 1,1,1-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| 1,1,2-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| Trichloroethene                 |          | ND           | ug/m3   | 0.10         | 0.0095                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| Trichlorofluoromethane          |          | 1.6          | ug/m3   | 0.050        | 0.0057                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| 1,1,2-Trichloro-1,2,2-trifluoro | ethane   | 0.64         | ug/m3   | 0.10         | 0.0078                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| Vinyl chloride                  |          | ND           | ug/m3   | 0.020        | 0.0046                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| p- & m-Xylenes                  |          | 3.3          | ug/m3   | 0.050        | 0.0082                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| o-Xylene                        |          | 1.1          | ug/m3   | 0.050        | 0.0044                                              | EPA-TO-15-SIM | ND         |              | 2               |  |
| Total Xylenes                   |          | 4.4          | ug/m3   | 0.10         | 0.013                                               | EPA-TO-15-SIM | ND         |              | 2               |  |
| 4-Bromofluorobenzene (Surro     | gate)    | 93.6         | %       | 50 - 150 (LC | L - UCL)                                            | EPA-TO-15-SIM |            |              | 1               |  |
| 4-Bromofluorobenzene (Surro     | gate)    | 109          | %       | 50 - 150 (LC | L - UCL)                                            | EPA-TO-15-SIM |            |              | 2               |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1001418032 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 04/24/2023 10:54 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample I | L Sample ID: 2307058-08 Client Sample Name: |                |                |         | 230407-0651, 4 | /7/2023 9:5 | 1:00AM, Clie | nt        |
|--------------|---------------------------------------------|----------------|----------------|---------|----------------|-------------|--------------|-----------|
|              |                                             | -              | Run            |         |                |             | QC           |           |
| DCN          | Method                                      | Prep Date      | Date/Time      | Analyst | Instrument     | Dilution    | Batch ID     |           |
| 1            | EPA-TO-15-SIM                               | 04/10/23 13:17 | 04/11/23 06:43 | BEP     | MS-A1          | 10          | B163730      | EPA TO-15 |
| 2            | EPA-TO-15-SIM                               | 04/10/23 13:17 | 04/11/23 02:06 | BEP     | MS-A1          | 1           | B163730      | EPA TO-15 |



Reported: 04/24/2023 10:54 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307058-08 | Client Sampl | t Sample Name: AA-710/10-20230407-0651, 4/7/2023 |     |     |            | 9:51:00AM, Client |              |     |  |
|----------------|------------|--------------|--------------------------------------------------|-----|-----|------------|-------------------|--------------|-----|--|
| Constituent    |            | Result       | Units                                            | PQL | MDL | Method     | MB<br>Bias        | Lab<br>Quals | DCN |  |
| Methane (CH4)  |            | 2.3          | ppmv                                             | 2.0 | 1.8 | ASTM-D1946 | ND                |              | 1   |  |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/10/23 08:04 | 04/10/23 20:03 | RMK     | GC-A1      | 1        | B163715  | No Prep     |

DCN = Data Continuation Number

Page 30 of 42



Reported:04/24/2023 10:54Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307058-09             | 9 Client Sample | Client Sample Name: |              | 230407-06 | 55, 4/7/2023 9:5 | 5:00AM, Clie | ent          |     |
|---------------------------------------|-----------------|---------------------|--------------|-----------|------------------|--------------|--------------|-----|
| Constituent                           | Result          | Units               | PQL          | MDL       | Method           | MB<br>Bias   | Lab<br>Quals | DCN |
| Acetone                               | 19              | ug/m3               | 10           | 0.075     | EPA-TO-15-SIM    | ND           | A01          | 1   |
| Benzene                               | 1.2             | ug/m3               | 0.050        | 0.0032    | EPA-TO-15-SIM    | ND           |              | 2   |
| Benzyl chloride                       | ND              | ug/m3               | 0.50         | 0.0052    | EPA-TO-15-SIM    | ND           |              | 2   |
| Carbon tetrachloride                  | ND              | ug/m3               | 0.20         | 0.0063    | EPA-TO-15-SIM    | ND           |              | 2   |
| Chlorobenzene                         | ND              | ug/m3               | 0.10         | 0.0079    | EPA-TO-15-SIM    | ND           |              | 2   |
| Chloroform                            | ND              | ug/m3               | 0.050        | 0.0058    | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,2-Dibromoethane                     | ND              | ug/m3               | 0.20         | 0.014     | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,2-Dichlorobenzene                   | ND              | ug/m3               | 0.20         | 0.011     | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,3-Dichlorobenzene                   | ND              | ug/m3               | 0.20         | 0.013     | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,4-Dichlorobenzene                   | ND              | ug/m3               | 0.20         | 0.016     | EPA-TO-15-SIM    | ND           |              | 2   |
| Dichlorodifluoromethane               | 3.4             | ug/m3               | 0.50         | 0.052     | EPA-TO-15-SIM    | ND           | A01          | 1   |
| 1,1-Dichloroethane                    | ND              | ug/m3               | 0.050        | 0.0041    | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,2-Dichloroethane                    | ND              | ug/m3               | 0.10         | 0.0046    | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,1-Dichloroethene                    | ND              | ug/m3               | 0.050        | 0.0078    | EPA-TO-15-SIM    | ND           |              | 2   |
| cis-1,2-Dichloroethene                | ND              | ug/m3               | 0.050        | 0.0044    | EPA-TO-15-SIM    | ND           |              | 2   |
| rans-1,2-Dichloroethene               | ND              | ug/m3               | 0.050        | 0.0075    | EPA-TO-15-SIM    | ND           |              | 2   |
| rans-1,3-Dichloropropene              | ND              | ug/m3               | 0.050        | 0.013     | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,1-Difluoroethane                    | 1.3             | ug/m3               | 5.0          | 0.0027    | EPA-TO-15-SIM    | ND           | J            | 2   |
| Ethylbenzene                          | 0.46            | ug/m3               | 0.050        | 0.017     | EPA-TO-15-SIM    | ND           |              | 2   |
| Methylene chloride                    | ND              | ug/m3               | 0.20         | 0.0077    | EPA-TO-15-SIM    | ND           |              | 2   |
| Tetrachloroethene                     | ND              | ug/m3               | 0.10         | 0.011     | EPA-TO-15-SIM    | ND           |              | 2   |
| Toluene                               | 2.9             | ug/m3               | 1.0          | 0.062     | EPA-TO-15-SIM    | ND           | A01          | 1   |
| 1,1,1-Trichloroethane                 | ND              | ug/m3               | 0.10         | 0.0055    | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,1,2-Trichloroethane                 | ND              | ug/m3               | 0.10         | 0.0055    | EPA-TO-15-SIM    | ND           |              | 2   |
| Trichloroethene                       | ND              | ug/m3               | 0.10         | 0.0095    | EPA-TO-15-SIM    | ND           |              | 2   |
| Trichlorofluoromethane                | 1.5             | ug/m3               | 0.050        | 0.0057    | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.63            | ug/m3               | 0.10         | 0.0078    | EPA-TO-15-SIM    | ND           |              | 2   |
| /inyl chloride                        | ND              | ug/m3               | 0.020        | 0.0046    | EPA-TO-15-SIM    | ND           |              | 2   |
| o- & m-Xylenes                        | 1.7             | ug/m3               | 0.050        | 0.0082    | EPA-TO-15-SIM    | ND           |              | 2   |
| o-Xylene                              | 0.60            | ug/m3               | 0.050        | 0.0044    | EPA-TO-15-SIM    | ND           |              | 2   |
| Fotal Xylenes                         | 2.3             | ug/m3               | 0.10         | 0.013     | EPA-TO-15-SIM    | ND           |              | 2   |
| 4-Bromofluorobenzene (Surrogate)      | 91.1            | %                   | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM    |              |              | 1   |
| 4-Bromofluorobenzene (Surrogate)      | 105             | %                   | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM    |              |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11418032 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001418032



Reported: 04/24/2023 10:54 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307058-09 Client Sample Name: |               |                | AA-CT-20230407-0655, 4/7/2023 9:55:00AM, Client |         |            |          |          |           |
|-----------------------------------------------|---------------|----------------|-------------------------------------------------|---------|------------|----------|----------|-----------|
|                                               |               | -              | Run                                             |         |            |          | QC       |           |
| DCN                                           | Method        | Prep Date      | Date/Time                                       | Analyst | Instrument | Dilution | Batch ID |           |
| 1                                             | EPA-TO-15-SIM | 04/10/23 13:17 | 04/11/23 07:14                                  | BEP     | MS-A1      | 10       | B163730  | EPA TO-15 |
| 2                                             | EPA-TO-15-SIM | 04/10/23 13:17 | 04/11/23 02:43                                  | BEP     | MS-A1      | 1        | B163730  | EPA TO-15 |



Reported: 04/24/2023 10:54 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307058-09 | Client Sampl | e Name: | AA-CT-20230407-0655, 4/7/2023 |     |            | 9:55:00AM, Clier | nt           |     |
|----------------|------------|--------------|---------|-------------------------------|-----|------------|------------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL                           | MDL | Method     | MB<br>Bias       | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 5.2          | ppmv    | 2.0                           | 1.8 | ASTM-D1946 | ND               |              | 1   |

|     |            | Run            |                |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/10/23 08:04 | 04/10/23 20:23 | RMK     | GC-A1      | 1        | B163715  | No Prep     |



Reported:04/24/2023 10:54Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Method Blank Analysis**

| Constituent                           | QC Sample ID | MB Result | Units | PQL     | MDL           | Lab Quals | Run # |
|---------------------------------------|--------------|-----------|-------|---------|---------------|-----------|-------|
| QC Batch ID: B163730                  |              |           |       |         |               |           |       |
| Acetone                               | B163730-BLK1 | ND        | ug/m3 | 1.0     | 0.0075        |           | 1     |
| Benzene                               | B163730-BLK1 | ND        | ug/m3 | 0.050   | 0.0032        |           | 1     |
| Benzyl chloride                       | B163730-BLK1 | ND        | ug/m3 | 0.50    | 0.0052        |           | 1     |
| Carbon tetrachloride                  | B163730-BLK1 | ND        | ug/m3 | 0.20    | 0.0063        |           | 1     |
| Chlorobenzene                         | B163730-BLK1 | ND        | ug/m3 | 0.10    | 0.0079        |           | 1     |
| Chloroform                            | B163730-BLK1 | ND        | ug/m3 | 0.050   | 0.0058        |           | 1     |
| 1,2-Dibromoethane                     | B163730-BLK1 | ND        | ug/m3 | 0.20    | 0.014         |           | 1     |
| 1,2-Dichlorobenzene                   | B163730-BLK1 | ND        | ug/m3 | 0.20    | 0.011         |           | 1     |
| 1,3-Dichlorobenzene                   | B163730-BLK1 | ND        | ug/m3 | 0.20    | 0.013         |           | 1     |
| 1,4-Dichlorobenzene                   | B163730-BLK1 | ND        | ug/m3 | 0.20    | 0.016         |           | 1     |
| Dichlorodifluoromethane               | B163730-BLK1 | ND        | ug/m3 | 0.050   | 0.0052        |           | 1     |
| 1,1-Dichloroethane                    | B163730-BLK1 | ND        | ug/m3 | 0.050   | 0.0041        |           | 1     |
| 1,2-Dichloroethane                    | B163730-BLK1 | ND        | ug/m3 | 0.10    | 0.0046        |           | 1     |
| 1,1-Dichloroethene                    | B163730-BLK1 | ND        | ug/m3 | 0.050   | 0.0078        |           | 1     |
| cis-1,2-Dichloroethene                | B163730-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 1     |
| trans-1,2-Dichloroethene              | B163730-BLK1 | ND        | ug/m3 | 0.050   | 0.0075        |           | 1     |
| trans-1,3-Dichloropropene             | B163730-BLK1 | ND        | ug/m3 | 0.050   | 0.013         |           | 1     |
| 1,1-Difluoroethane                    | B163730-BLK1 | ND        | ug/m3 | 5.0     | 0.0027        |           | 1     |
| Ethylbenzene                          | B163730-BLK1 | ND        | ug/m3 | 0.050   | 0.017         |           | 1     |
| Methylene chloride                    | B163730-BLK1 | ND        | ug/m3 | 0.20    | 0.0077        |           | 1     |
| Tetrachloroethene                     | B163730-BLK1 | ND        | ug/m3 | 0.10    | 0.011         |           | 1     |
| Toluene                               | B163730-BLK1 | ND        | ug/m3 | 0.10    | 0.0062        |           | 1     |
| 1,1,1-Trichloroethane                 | B163730-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 1     |
| 1,1,2-Trichloroethane                 | B163730-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 1     |
| Trichloroethene                       | B163730-BLK1 | ND        | ug/m3 | 0.10    | 0.0095        |           | 1     |
| Trichlorofluoromethane                | B163730-BLK1 | ND        | ug/m3 | 0.050   | 0.0057        |           | 1     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | B163730-BLK1 | ND        | ug/m3 | 0.10    | 0.0078        |           | 1     |
| Vinyl chloride                        | B163730-BLK1 | ND        | ug/m3 | 0.020   | 0.0046        |           | 1     |
| p- & m-Xylenes                        | B163730-BLK1 | ND        | ug/m3 | 0.050   | 0.0082        |           | 1     |
| o-Xylene                              | B163730-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 1     |
| Total Xylenes                         | B163730-BLK1 | ND        | ug/m3 | 0.10    | 0.013         |           | 1     |
| 4-Bromofluorobenzene (Surrogate)      | B163730-BLK1 | 82.5      | %     | 50 - 15 | 0 (LCL - UCL) |           | 1     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

1001418032 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:04/24/202310:54Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Method Blank Analysis**

| Run # | QC Sample ID | QC Type | Method        | Prep Date | Run<br>Date Time | Analyst | Instrument | Dilution |
|-------|--------------|---------|---------------|-----------|------------------|---------|------------|----------|
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |
| 1     | B163730-BLK1 | PB      | EPA-TO-15-SIM | 04/10/23  | 04/10/23 20:14   | BEP     | MS-A1      | 1        |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report approved in the sumption in the control of clasted value in

Report ID: 1001418032



Reported:04/24/202310:54Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

|                        |                             |             |                    |                    |                |              | •   |                      |       |       |        |
|------------------------|-----------------------------|-------------|--------------------|--------------------|----------------|--------------|-----|----------------------|-------|-------|--------|
|                        |                             |             |                    |                    |                |              |     | Control I            | imits |       |        |
|                        |                             |             |                    | Spike              |                | Percent      |     | Percent              |       | Lab   |        |
| Constituent            | QC Sample ID                | Туре        | Result             | Level              | Units          | Recovery     | RPD | Recovery             | RPD   | Quals | Run #  |
| QC Batch ID: B163730   |                             |             |                    |                    |                |              |     |                      |       |       |        |
| Benzene                | <br>B163730-BS1             | LCS         | 0.27015            | 0.31948            | ug/m3          | 84.6         |     | 70 - 130             |       |       | 1      |
|                        | B163730-BSD1                | LCSD        | 0.26513            | 0.31948            | ug/m3          | 83.0         | 1.9 | 70 - 130             | 30    |       | 2      |
| Benzyl chloride        | B163730-BS1                 | LCS         | 0.42427            | 0.51772            | ug/m3          | 82.0         |     | 70 - 130             |       | J     | 1      |
|                        | B163730-BSD1                | LCSD        | 0.40211            | 0.51772            | ug/m3          | 77.7         | 5.4 | 70 - 130             | 30    | J     | 2      |
| Carbon tetrachloride   | B163730-BS1                 | LCS         | 0.53048            | 0.62913            | ug/m3          | 84.3         |     | 70 - 130             |       |       | 1      |
| Carbon tetrachionde    | B163730-BSD1                | LCS         | 0.53678            | 0.62913            | ug/m3          | 85.3         | 1.2 | 70 - 130<br>70 - 130 | 30    |       | 2      |
| Chlorobenzene          | B163730-BS1                 |             | 0.40161            | 0.46036            |                | 87.2         |     | 70 - 130             |       |       | 1      |
| Chiorobenzene          | B163730-BSD1                | LCS<br>LCSD | 0.40101            | 0.46036            | ug/m3<br>ug/m3 | 87.4         | 0.2 | 70 - 130<br>70 - 130 | 30    |       | 2      |
|                        |                             |             |                    |                    | -              |              | 0.2 |                      |       |       |        |
| Chloroform             | B163730-BS1<br>B163730-BSD1 | LCS         | 0.42800<br>0.42595 | 0.48825<br>0.48825 | ug/m3<br>ug/m3 | 87.7<br>87.2 | 0.5 | 70 - 130<br>70 - 130 | 30    |       | 1<br>2 |
|                        |                             | LCSD        |                    |                    |                |              | 0.5 |                      | 50    |       |        |
| 1,2-Dibromoethane      | B163730-BS1                 | LCS         | 0.66193            | 0.76835            | ug/m3          | 86.1         | 4.0 | 70 - 130             | 00    |       | 1      |
|                        | B163730-BSD1                | LCSD        | 0.67084            | 0.76835            | ug/m3          | 87.3         | 1.3 | 70 - 130             | 30    |       | 2      |
| 1,2-Dichlorobenzene    | B163730-BS1                 | LCS         | 0.55987            | 0.60124            | ug/m3          | 93.1         |     | 70 - 130             |       |       | 1      |
|                        | B163730-BSD1                | LCSD        | 0.54273            | 0.60124            | ug/m3          | 90.3         | 3.1 | 70 - 130             | 30    |       | 2      |
| 1,3-Dichlorobenzene    | B163730-BS1                 | LCS         | 0.54556            | 0.60124            | ug/m3          | 90.7         |     | 70 - 130             |       |       | 1      |
|                        | B163730-BSD1                | LCSD        | 0.52145            | 0.60124            | ug/m3          | 86.7         | 4.5 | 70 - 130             | 30    |       | 2      |
| 1,4-Dichlorobenzene    | B163730-BS1                 | LCS         | 0.55121            | 0.60124            | ug/m3          | 91.7         |     | 70 - 130             |       |       | 1      |
|                        | B163730-BSD1                | LCSD        | 0.51394            | 0.60124            | ug/m3          | 85.5         | 7.0 | 70 - 130             | 30    |       | 2      |
| 1,1-Dichloroethane     | B163730-BS1                 | LCS         | 0.34711            | 0.40474            | ug/m3          | 85.8         |     | 70 - 130             |       |       | 1      |
|                        | B163730-BSD1                | LCSD        | 0.34192            | 0.40474            | ug/m3          | 84.5         | 1.5 | 70 - 130             | 30    |       | 2      |
| 1,2-Dichloroethane     | B163730-BS1                 | LCS         | 0.33472            | 0.40474            | ug/m3          | 82.7         |     | 70 - 130             |       |       | 1      |
|                        | B163730-BSD1                | LCSD        | 0.33209            | 0.40474            | ug/m3          | 82.0         | 0.8 | 70 - 130             | 30    |       | 2      |
| 1,1-Dichloroethene     | B163730-BS1                 | LCS         | 0.33932            | 0.39649            | ug/m3          | 85.6         |     | 70 - 130             |       |       | 1      |
|                        | B163730-BSD1                | LCSD        | 0.34463            | 0.39649            | ug/m3          | 86.9         | 1.6 | 70 - 130             | 30    |       | 2      |
| cis-1,2-Dichloroethene | B163730-BS1                 | LCS         | 0.31474            | 0.39649            | ug/m3          | 79.4         |     | 70 - 130             |       |       | 1      |
|                        | B163730-BSD1                | LCSD        | 0.31942            | 0.39649            | ug/m3          | 80.6         | 1.5 | 70 - 130             | 30    |       | 2      |
| Methylene chloride     | B163730-BS1                 | LCS         | 0.29878            | 0.34737            | ug/m3          | 86.0         |     | 70 - 130             |       |       | 1      |
|                        | B163730-BSD1                | LCSD        | 0.30527            | 0.34737            | ug/m3          | 87.9         | 2.2 | 70 - 130             | 30    |       | 2      |
| Tetrachloroethene      | B163730-BS1                 | LCS         | 0.60276            | 0.67825            | ug/m3          | 88.9         |     | 70 - 130             |       |       | 1      |
| retractionoethene      | B163730-BSD1                | LCSD        | 0.59435            | 0.67825            | ug/m3          | 87.6         | 1.4 | 70 - 130<br>70 - 130 | 30    |       | 2      |
| Taluana                |                             |             |                    |                    |                |              |     |                      |       |       |        |
| Toluene                | B163730-BS1<br>B163730-BSD1 | LCS<br>LCSD | 0.30743<br>0.30717 | 0.37684<br>0.37684 | ug/m3<br>ug/m3 | 81.6<br>81.5 | 0.1 | 70 - 130<br>70 - 130 | 30    |       | 1<br>2 |
|                        |                             |             |                    |                    | -              |              | 0.1 |                      | 50    |       |        |
| 1,1,1-Trichloroethane  | B163730-BS1<br>B163730-BSD1 | LCS         | 0.47753            | 0.54562            | ug/m3          | 87.5<br>86 7 | 1.0 | 70 - 130<br>70 - 130 | 20    |       | 1      |
|                        |                             | LCSD        | 0.47289            | 0.54562            | ug/m3          | 86.7         | 1.0 |                      | 30    |       | 2      |
| 1,1,2-Trichloroethane  | B163730-BS1                 | LCS         | 0.47174            | 0.54562            | ug/m3          | 86.5         |     | 70 - 130             |       |       | 1      |
|                        | B163730-BSD1                | LCSD        | 0.46896            | 0.54562            | ug/m3          | 86.0         | 0.6 | 70 - 130             | 30    |       | 2      |

#### **Quality Control Report - Laboratory Control Sample**

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001418032



Reported:04/24/202310:54Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

|                                  |              |      |         |                |       |                     |     | Control I           | _imits |              |       |  |
|----------------------------------|--------------|------|---------|----------------|-------|---------------------|-----|---------------------|--------|--------------|-------|--|
| Constituent                      | QC Sample ID | Tuno | Result  | Spike<br>Level | Units | Percent<br>Recovery | RPD | Percent<br>Recovery | RPD    | Lab<br>Quals | Run # |  |
| Constituent                      |              | Туре | Result  | Level          | Units | Recovery            | KFD | Recovery            | KFD    | Quais        | Kull# |  |
| QC Batch ID: B163730             |              |      |         |                |       |                     |     |                     |        |              |       |  |
| Trichloroethene                  | B163730-BS1  | LCS  | 0.45655 | 0.53737        | ug/m3 | 85.0                |     | 70 - 130            |        |              | 1     |  |
|                                  | B163730-BSD1 | LCSD | 0.46209 | 0.53737        | ug/m3 | 86.0                | 1.2 | 70 - 130            | 30     |              | 2     |  |
| Vinyl chloride                   | B163730-BS1  | LCS  | 0.21441 | 0.25562        | ug/m3 | 83.9                |     | 70 - 130            |        |              | 1     |  |
|                                  | B163730-BSD1 | LCSD | 0.21438 | 0.25562        | ug/m3 | 83.9                | 0.0 | 70 - 130            | 30     |              | 2     |  |
| p- & m-Xylenes                   | B163730-BS1  | LCS  | 0.69548 | 0.86843        | ug/m3 | 80.1                |     | 70 - 130            |        |              | 1     |  |
|                                  | B163730-BSD1 | LCSD | 0.69570 | 0.86843        | ug/m3 | 80.1                | 0.0 | 70 - 130            | 30     |              | 2     |  |
| o-Xylene                         | B163730-BS1  | LCS  | 0.35245 | 0.43421        | ug/m3 | 81.2                |     | 70 - 130            |        |              | 1     |  |
|                                  | B163730-BSD1 | LCSD | 0.35288 | 0.43421        | ug/m3 | 81.3                | 0.1 | 70 - 130            | 30     |              | 2     |  |
| Total Xylenes                    | B163730-BS1  | LCS  | 1.0479  | 1.3026         | ug/m3 | 80.4                |     | 70 - 130            |        |              | 1     |  |
|                                  | B163730-BSD1 | LCSD | 1.0486  | 1.3026         | ug/m3 | 80.5                | 0.1 | 70 - 130            | 30     |              | 2     |  |
| 4-Bromofluorobenzene (Surrogate) | B163730-BS1  | LCS  | 3.63    | 3.58           | ug/m3 | 101                 |     | 50 - 150            |        |              | 1     |  |
|                                  | B163730-BSD1 | LCSD | 3.52    | 3.58           | ug/m3 | 98.2                | 3.2 | 50 - 150            |        |              | 2     |  |

#### **Quality Control Report - Laboratory Control Sample**



Reported:04/24/2023 10:54Project:City TerraceProject Number:2855Project Manager:April McGuire

#### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Laboratory Control Sample**

| Run # | QC Sample ID | QC Type | Method        | Prep Date | Run<br>Date Time | Analyst | Instrument | Dilution |  |
|-------|--------------|---------|---------------|-----------|------------------|---------|------------|----------|--|
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 1     | B163730-BS1  | LCS     | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:15   | BEP     | MS-A1      | 1        |  |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47   | BEP     | MS-A1      | 1        |  |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47   | BEP     | MS-A1      | 1        |  |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47   | BEP     | MS-A1      | 1        |  |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47   | BEP     | MS-A1      | 1        |  |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47   | BEP     | MS-A1      | 1        |  |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47   | BEP     | MS-A1      | 1        |  |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47   | BEP     | MS-A1      | 1        |  |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47   | BEP     | MS-A1      | 1        |  |
|       |              |         |               |           |                  |         |            |          |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting particular submitting particular provide and the submitting particular submi

Report ID: 1001418032



Reported:04/24/202310:54Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Laboratory Control Sample**

|       |              |         |               |           | Run            |         |            |          |
|-------|--------------|---------|---------------|-----------|----------------|---------|------------|----------|
| Run # | QC Sample ID | QC Type | Method        | Prep Date | Date Time      | Analyst | Instrument | Dilution |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47 | BEP     | MS-A1      | 1        |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47 | BEP     | MS-A1      | 1        |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47 | BEP     | MS-A1      | 1        |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47 | BEP     | MS-A1      | 1        |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47 | BEP     | MS-A1      | 1        |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47 | BEP     | MS-A1      | 1        |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47 | BEP     | MS-A1      | 1        |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47 | BEP     | MS-A1      | 1        |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47 | BEP     | MS-A1      | 1        |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47 | BEP     | MS-A1      | 1        |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47 | BEP     | MS-A1      | 1        |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47 | BEP     | MS-A1      | 1        |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47 | BEP     | MS-A1      | 1        |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47 | BEP     | MS-A1      | 1        |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47 | BEP     | MS-A1      | 1        |
| 2     | B163730-BSD1 | LCSD    | EPA-TO-15-SIM | 04/10/23  | 04/10/23 19:47 | BEP     | MS-A1      | 1        |



Reported: 04/24/2023 10:54 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

#### Fixed Gases by GC/TCD (ASTM D1946)

#### **Quality Control Report - Method Blank Analysis**

| Constituent            |                |         | QC Sample ID | MB Result | Units            | PC      | ΩL I       | MDL     | Lab Quals | Run # |
|------------------------|----------------|---------|--------------|-----------|------------------|---------|------------|---------|-----------|-------|
| QC Bat<br>Methane (CH4 | ch ID: B163715 |         | B163715-BLK1 | ND        | ppmv             | 2       | .0         | 1.8     |           | 1     |
| Run #                  | QC Sample ID   | QC Type | Method       | Prep Date | Run<br>Date Time | Analyst | Instrument | Dilutio | n         |       |
| 1                      | B163715-BLK1   | PB      | ASTM-D1946   | 04/10/23  | 04/10/23 16:41   | RMK     | GC-A1      | 1       |           |       |

Page 40 of 42



Reported:04/24/202310:54Project:City TerraceProject Number:2855Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

#### **Quality Control Report - Laboratory Control Sample**

|              |             |                 |                       |                                                                                          |                                                                                                             | Control Limits                                                          |                                                                                                                                          |                                                                                                                   |                                                                                                                                               |                                                                                                                                         |  |
|--------------|-------------|-----------------|-----------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| QC Sample ID | Туре        | Result          | Spike<br>Level        | Units                                                                                    | Percent<br>Recovery                                                                                         | RPD                                                                     | Percent<br>Recovery                                                                                                                      |                                                                                                                   |                                                                                                                                               | Run #                                                                                                                                   |  |
|              |             |                 |                       |                                                                                          |                                                                                                             |                                                                         |                                                                                                                                          |                                                                                                                   |                                                                                                                                               |                                                                                                                                         |  |
| B163715-BS1  | LCS         | 19508           | 18000                 | ppmv                                                                                     | 108                                                                                                         |                                                                         | 70 - 130                                                                                                                                 |                                                                                                                   |                                                                                                                                               | 1                                                                                                                                       |  |
| B163715-BSD1 | LCSD        | 19422           | 18000                 | ppmv                                                                                     | 108                                                                                                         | 0.4                                                                     | 70 - 130                                                                                                                                 | 30                                                                                                                |                                                                                                                                               | 2                                                                                                                                       |  |
|              | B163715-BS1 | B163715-BS1 LCS | B163715-BS1 LCS 19508 | QC Sample ID     Type     Result     Level       B163715-BS1     LCS     19508     18000 | QC Sample ID     Type     Result     Level     Units       B163715-BS1     LCS     19508     18000     ppmv | QC Sample IDTypeResultLevelUnitsRecoveryB163715-BS1LCS1950818000ppmv108 | QC Sample ID     Type     Result     Level     Units     Recovery     RPD       B163715-BS1     LCS     19508     18000     ppmv     108 | QC Sample IDTypeResultSpike<br>LevelUnitsPercent<br>RecoveryPercent<br>RPDB163715-BS1LCS1950818000ppmv10870 - 130 | QC Sample IDTypeResultSpike<br>LevelPercent<br>UnitsPercent<br>RecoveryPercent<br>RPDPercent<br>RPDRPDB163715-BS1LCS1950818000ppmv10870 - 130 | QC Sample IDTypeResultSpike<br>LevelUnitsPercent<br>RecoveryPercent<br>RPDLab<br>QualsB163715-BS1LCS1950818000ppmv10870 - 130Lab<br>Lob |  |

|       |              |         |            |           | Run            |         |            |          |
|-------|--------------|---------|------------|-----------|----------------|---------|------------|----------|
| Run # | QC Sample ID | QC Type | Method     | Prep Date | Date Time      | Analyst | Instrument | Dilution |
| 1     | B163715-BS1  | LCS     | ASTM-D1946 | 04/10/23  | 04/10/23 16:00 | RMK     | GC-A1      | 1        |
| 2     | B163715-BSD1 | LCSD    | ASTM-D1946 | 04/10/23  | 04/10/23 16:21 | RMK     | GC-A1      | 1        |



# Reported:04/24/2023 10:54Project:City TerraceProject Number:2855Project Manager:April McGuire

#### **Notes And Definitions**

| J Estimated Value | (CLP Flag) |
|-------------------|------------|
|-------------------|------------|

- MDL Method Detection Limit
- ND Analyte Not Detected
- PQL Practical Quantitation Limit
- A01 Detection and quantitation limits are raised due to sample dilution.



Date of Report: 05/02/2023

April McGuire

Roux Associates, Inc -Long Beach 5150 E. Pacific Coast Hwy, Suite 450 Long Beach, CA 90804

Client Project:2855BCL Project:City TerraceBCL Work Order:2307358Invoice ID:B474860

Enclosed are the results of analyses for samples received by the laboratory on 4/13/2023. If you have any questions concerning this report, please feel free to contact me.

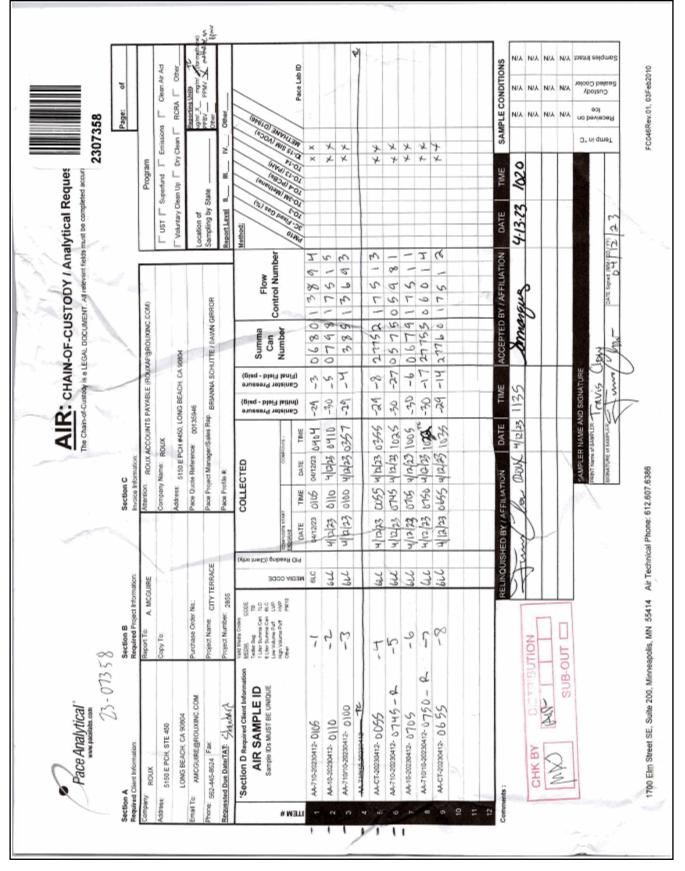
Sincerely,

Contact Person: Brianna Schutte Client Services Rep

A

Stuart Buttram Operations Manager

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101




#### **Table of Contents**

| Sample Information                                            |    |
|---------------------------------------------------------------|----|
| Chain of Custody and Cooler Receipt form                      | 3  |
| Laboratory / Client Sample Cross Reference                    |    |
| Sample Results                                                |    |
| 2307358-01 - AA-710-20230412-0105                             |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) | 9  |
| Fixed Gases by GC/TCD (ASTM D1946)                            | 11 |
| 2307358-02 - AA-10-20230412-0110                              |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) | 12 |
| Fixed Gases by GC/TCD (ASTM D1946).                           |    |
| 2307358-03 - AA-710/10-20230412-0100                          |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) | 15 |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307358-04 - AA-CT-20230412-0055                              |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) | 18 |
| Fixed Gases by GC/TCD (ASTM D1946)                            | 20 |
| 2307358-06 - AA-10-20230412-0705                              |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) | 21 |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| Quality Control Reports                                       |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Method Blank Analysis                                         | 24 |
| Laboratory Control Sample                                     | 26 |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| Method Blank Analysis                                         | 28 |
| Laboratory Control Sample                                     | 29 |
| Notes                                                         |    |
| Notes and Definitions                                         | 30 |



#### Chain of Custody and Cooler Receipt Form for 2307358 Page 1 of 4





#### Chain of Custody and Cooler Receipt Form for 2307358 Page 2 of 4

| PACE ANALYTICAL<br>Submission #:23-0735                   | ORMA                | TION             | OOLEF         |            |         |                                                                                                                 | 10 00    |                 | ige <u>(</u>   | _Of_   |             |                |  |
|-----------------------------------------------------------|---------------------|------------------|---------------|------------|---------|-----------------------------------------------------------------------------------------------------------------|----------|-----------------|----------------|--------|-------------|----------------|--|
| Fed Ex Z UPS GSO                                          | / GLS (<br>Other [] | э н              | and Deli      | very D     | - Ico   | SHIPPING CONTAINER     FREE LIQUID       Ice Chest □     None □     Box ≠       Other □ (Specify)     W / S     |          |                 |                |        |             |                |  |
| Refrigerant: Ice 🗆 Blue Ice                               | 0 🖸                 | None             | zí o          | ther 🗆     | Com     | nents:                                                                                                          |          |                 | -              |        |             |                |  |
| Custody Seals Ice Chest                                   | Intac               | ontair<br>17 Yes | ters⊡<br>⊡No⊡ | Non        | e en ca | omments:                                                                                                        |          |                 |                |        |             |                |  |
| All samples received? Yes No O                            | All s               | amples           | s containd    | ers Intact | 7 Yes   | No 🗆                                                                                                            | D        | escription(     | e) mateh       | 0000   |             |                |  |
| COC Received                                              | Emissi              | vity:            | $\geq$        | Containe   | Sino    | Thermo                                                                                                          | meter ID |                 |                |        |             |                |  |
| ZIYES DINO                                                |                     |                  | (A)           | Raci       | h °c    | / (0)                                                                                                           | 10       | 20.0            |                |        | nit 5146    |                |  |
|                                                           | T                   |                  |               |            |         |                                                                                                                 | PLENUN   |                 | /              | naiyst | 1112146     | 10/0           |  |
| SAMPLE CONTAINERS                                         | _                   | 1                | 2             | 1 3        | 4       | the second se |          | d I             | - 1            |        |             |                |  |
| OT PE UNPRES                                              |                     |                  | 1             |            |         |                                                                                                                 |          | <u> </u>        |                | 3      |             | 10             |  |
| 492/802/1602 PE UNPRES                                    |                     |                  |               |            |         |                                                                                                                 |          |                 |                |        |             | t1             |  |
|                                                           |                     |                  |               |            |         |                                                                                                                 |          |                 |                |        |             |                |  |
| OT INORGANIC CHEMICAL METALS                              |                     |                  |               |            |         |                                                                                                                 |          | •               |                |        |             |                |  |
| INORGANIC CHEMICAL METALS 40E / Box /                     | 1602                |                  |               |            |         |                                                                                                                 |          |                 |                |        |             |                |  |
| PT NITRÖGEN FORMS                                         |                     |                  |               |            |         |                                                                                                                 |          |                 |                |        |             |                |  |
| PT TOTAL SULFIDE                                          | -+-                 | ··               | +             | <u> </u>   |         |                                                                                                                 |          |                 |                |        |             |                |  |
| OF NITRATE / NITRITE                                      |                     | _                |               |            |         |                                                                                                                 |          |                 |                |        |             |                |  |
| T TOTAL ORGANIC CARBON                                    |                     |                  | <u> </u>      | 1          |         |                                                                                                                 |          |                 |                |        |             | ·              |  |
| T CHEMICAL OXYGEN DEMAND                                  |                     |                  |               |            |         |                                                                                                                 |          | -1-             |                |        |             |                |  |
| A PHENOLICS                                               |                     |                  |               | 1          | 1       |                                                                                                                 |          |                 |                |        |             |                |  |
| and VOA VIAL TRAVEL BLANK                                 |                     |                  |               | -          |         |                                                                                                                 |          |                 |                |        |             |                |  |
| BULVOA VIAL                                               | _                   |                  |               |            |         |                                                                                                                 | -        |                 | í              |        |             |                |  |
| T EPA 1664B                                               |                     |                  |               |            |         |                                                                                                                 |          |                 |                |        |             | i              |  |
| TODOR                                                     |                     |                  | <u> </u>      |            |         |                                                                                                                 |          |                 |                |        |             |                |  |
| ADIOLOGICAL<br>ACTERIÓLOGICAL                             | _                   | _                | <u> </u>      | <u> </u>   | 1       |                                                                                                                 |          |                 |                |        |             |                |  |
| Dml VQA VIAL-504                                          |                     |                  |               | <u> </u>   |         |                                                                                                                 |          |                 |                |        |             |                |  |
| T EPA 505/608.3/5081A                                     | -                   |                  | <u> </u>      |            |         |                                                                                                                 |          |                 | _              |        |             |                |  |
| T EPA 515,1/81SIA                                         |                     |                  |               |            |         |                                                                                                                 |          |                 |                |        |             |                |  |
| T EPA 525,2                                               |                     |                  |               | <u> </u>   |         |                                                                                                                 |          |                 |                |        |             |                |  |
| TEPA 525.2 TRAVEL BLANK                                   | 1-                  |                  |               |            |         | +                                                                                                               |          |                 | _              | -+-    |             |                |  |
| ml EPA 547                                                |                     |                  |               |            | 1       |                                                                                                                 | +        |                 |                |        | -+          |                |  |
| m) EPA 531,1                                              |                     |                  |               |            |         |                                                                                                                 |          |                 |                |        |             |                |  |
| z EPA 548.1                                               |                     |                  |               |            |         | 1                                                                                                               | 1        |                 |                |        |             |                |  |
| T EPA 549.2                                               |                     |                  |               |            |         |                                                                                                                 |          | 1 -             |                |        |             |                |  |
| FEPA 8015M                                                |                     |                  |               |            |         |                                                                                                                 |          |                 | +-             |        |             |                |  |
| EPA 8270C                                                 | _                   |                  |               |            |         |                                                                                                                 |          |                 |                | -      |             |                |  |
| 11602/3202 AMBER                                          | _                   |                  |               |            |         |                                                                                                                 | -        |                 |                |        |             |                |  |
| 1/1602/3203 JAR<br>IL SLEEVE                              | _                   |                  |               |            |         |                                                                                                                 |          |                 | -              |        |             |                |  |
| BVIAL                                                     | -                   | -+               |               |            |         |                                                                                                                 |          |                 | _              |        |             |                |  |
| ASTIC BÁG                                                 | +                   | -+               | _             |            |         |                                                                                                                 |          |                 |                |        |             |                |  |
| DLAR BAG                                                  |                     |                  | -             |            |         |                                                                                                                 |          |                 |                |        |             |                |  |
| RROUSTRON                                                 |                     |                  |               |            |         |                                                                                                                 | -        |                 |                |        |             |                |  |
| CORE                                                      |                     |                  |               |            |         |                                                                                                                 | 1        |                 |                |        |             |                |  |
| ART KIT                                                   |                     |                  |               |            |         | -                                                                                                               | 1        |                 |                |        |             |                |  |
| IMA CANISTER 6L                                           | A                   |                  |               | A          | ~       | A                                                                                                               | -        |                 |                |        |             |                |  |
| ments:                                                    |                     |                  |               |            |         |                                                                                                                 |          | -               | <u></u>        |        |             |                |  |
| ple Numbering Completed By: 104<br>Actual / C = Corrected | 1                   |                  |               | Date       | Time:   | 4-13-1                                                                                                          | -3-11    | 5D<br>[8:14#Doc | WordPorfection |        | Rev 23 05/2 | (V22<br>mm 28) |  |



#### Chain of Custody and Cooler Receipt Form for 2307358 Page 3 of 4

| Submission #: 23~ 07358                                                 |                                    |           | RECEIP      | Ortan                                                                                   |          |            | Page         |          | if 3          |          |
|-------------------------------------------------------------------------|------------------------------------|-----------|-------------|-----------------------------------------------------------------------------------------|----------|------------|--------------|----------|---------------|----------|
| SHIPPING INFO<br>Fed Ex SU UPS D GSO / O<br>Pace Lab Field Service D Ot | RMATION<br>GLS II H<br>her II (Spe | and Deli  | ivary 🗆     | SHIPPING CONTAINER FREE LIQ<br>lce Chest I None Box & YES No<br>Other I (Specify) W / S |          |            |              |          |               | NO A     |
| Refrigerant: Ice 🗆 Blue Ice I                                           | None                               | N C       | ther 🖸      | Commer                                                                                  | ter      |            |              |          |               |          |
| Custody Seals Ice Chest                                                 | Contair                            | ners 🗆    | **          | Com                                                                                     | _        |            |              |          |               |          |
| All samples received? Yes No D                                          | All samples                        | s contain | ers Intert? | Van X Ma                                                                                |          |            |              |          |               |          |
|                                                                         | All samples<br>missivity:          | -         | Containen   | LINE NO                                                                                 | 0        | Desc       | iption(s) ma |          |               |          |
| NYES NO                                                                 |                                    |           | 200 anon    | CIMPEL:                                                                                 | nermomet | or (D;     |              |          | imo <u>91</u> |          |
|                                                                         | emperature                         | (A)       | uon         | <u>°C /</u>                                                                             | (c) 70   | 2mf        | 2 °C         | Analys   | t Init SM     | 4 1020   |
| SAMPLE CONTAINERS                                                       |                                    |           |             |                                                                                         | SAMPLE   | NUMBER     | ts           |          |               |          |
| 2T PE UNPRES                                                            |                                    | 2         | 31          | 4                                                                                       | 6        | 6          | 7            | 8        | 1 9           | 10       |
| az/åoz/léoz PE UNPRES                                                   |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| loc Cr*4                                                                |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| T INORGANIC CHEMICAL METALS                                             | -                                  |           |             |                                                                                         |          | (——        |              | <u> </u> | +             |          |
| NORGANIC CHEMICAL METALS 40x / Bez / 160                                | 12                                 | 1         |             |                                                                                         |          |            | - <b>-</b>   |          |               | +        |
| TCYANIDE                                                                |                                    | 1         |             |                                                                                         |          |            |              |          |               | 1-1      |
| T NITROGEN FORMS                                                        |                                    |           |             |                                                                                         |          |            |              |          |               | <u>+</u> |
| T TOTAL SULFIDE                                                         |                                    | 1         |             |                                                                                         |          |            |              |          |               |          |
| OL NITRATE / NITRITE                                                    |                                    |           |             |                                                                                         |          |            | 1            |          |               |          |
| T TOTAL ORGANIC CARBON                                                  |                                    |           |             |                                                                                         |          |            | +            | <u> </u> | +             | <u>i</u> |
| T CHEMICAL OXYGEN BEMAND                                                |                                    |           |             |                                                                                         |          | _          |              |          |               |          |
| A PHENOLICS                                                             |                                    |           |             |                                                                                         |          |            |              |          |               | †        |
| MI VOA VIAL TRAVEL BLANK                                                | <u> </u>                           | <u> </u>  |             |                                                                                         |          |            |              |          |               |          |
| TEPA 16648                                                              |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| CODOR                                                                   | +                                  | <u> </u>  |             |                                                                                         |          |            |              |          |               |          |
| ADIOLOGICAL                                                             |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| CTERIOLOGICAL                                                           |                                    | <u> </u>  | [           |                                                                                         |          |            |              |          |               |          |
| INI YOA VIAL- 504                                                       |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| EPA 548/608.3/9081A                                                     | 1                                  |           |             |                                                                                         |          |            |              |          |               |          |
| EPA 515.1/8151A                                                         |                                    |           | [ -         |                                                                                         |          |            |              |          |               |          |
| EPA 525.2                                                               |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| EPA 525.2 TRAVEL BLANK                                                  |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| ml EPA 547                                                              |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| al EPA 531.1                                                            |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| EPA 548.1                                                               |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| EPA 549.2                                                               |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| EPA 8015M                                                               |                                    |           | -           |                                                                                         |          |            |              |          |               |          |
| EPA \$270C                                                              |                                    | _         |             |                                                                                         |          |            |              |          |               |          |
| / IGoz/32oz AMBER                                                       |                                    |           |             |                                                                                         | 1        |            |              |          |               |          |
| /160x/32oz.JAR                                                          |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| VIAL                                                                    |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| STIC BAG                                                                |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| LAR BAG                                                                 |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| ROUS IRON                                                               |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| ORE                                                                     |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| RT KIT                                                                  |                                    |           |             |                                                                                         |          |            |              |          |               |          |
| MA CANISTER 6                                                           |                                    |           |             |                                                                                         |          |            |              |          |               |          |
|                                                                         |                                    | AI        |             |                                                                                         |          | <u>A  </u> |              | <u> </u> |               |          |
| nents:<br>Ne Numbering Completed By:                                    | th                                 | _         | Ded - D'    |                                                                                         |          |            | 4            |          |               |          |
| ctual / C = Corrected                                                   | m                                  |           | Date/Tip    | गण्ड. <u> </u>                                                                          | -(3-25   | 3 110      | 0            |          | Rev 23 45/7   | ecin     |



#### Chain of Custody and Cooler Receipt Form for 2307358 Page 4 of 4

| PACE ANALYTICAL<br>Submission #: 23-0735                    | 8     | C              | OOLER     | RECEIP    | T FORM |              |                             | Pag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eO                | f_3                            |                      |
|-------------------------------------------------------------|-------|----------------|-----------|-----------|--------|--------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------|----------------------|
|                                                             |       |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| SHIPPING INI<br>Fed Ex N UPS GO<br>Pace Lab Field Service G | / GLS | AATION<br>D Ha | and Delly | ery 13    | lce Ch | est 🗆        | G CONT<br>None D<br>pecify) | Box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | YES C                          | LIQUID<br>NO AL      |
| Refrigerant: Ice D Blue Ic                                  | e 🗆   | None           | S 01      | hor 🛛     | Comme  | nts:         |                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H                 |                                |                      |
| Custody Seals Ice Chest                                     |       | Contain        | ers 🗇     | _         | S. Com |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| All samples received? Yes No D                              | All   | samples        | container | s Intact? | A An   |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| COC Received                                                | Emis  | sivity:        | - c       | ontainers | Atanta | Charmon      | Desc                        | ription(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | ? Yes                          |                      |
| NYES INO                                                    | Tem   | perature:      | (A) R     | am        | _°C /  | ( <u>c</u> ) | tem                         | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date              | rime <u>4-</u><br>/st init 5/2 | 13.23<br>UH 1020     |
| SAMPLE CONTAINERS                                           |       |                |           |           |        |              | LE NUMBER                   | work of the local division of the local divi |                   |                                | 11100                |
| OT PE UNPRES                                                |       | 1              | 2         | 3-        | 4      | 6            | 6                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a                 | 9                              | 1 10                 |
| 4sz/Sez/16oz PE UNPRES                                      | -     |                |           |           |        |              | -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| 204 Cr'*                                                    | - 1   |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| OT INORGANIC CHEMICAL METALS                                |       |                | f         |           |        | <u> </u>     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| INORGANIC CHEMICAL METALS 40x / 80x/                        | 160   |                |           |           |        | F            |                             | · -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                |                      |
| PT CYANIDE                                                  | 1002  |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| PT NITROGEN FORMS                                           | -1    |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| PT TOTAL SULFIDE                                            |       |                |           |           |        |              | +                           | - <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                |                      |
| 2 or. NITRATE / NITRITE                                     | -1    |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| PT TOTAL ORGANIC CARBON                                     | -     |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| PT CHEMICAL OXYGEN DEMAND                                   |       |                | _         |           |        |              |                             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | _                              |                      |
| PIA PHENOLICS                                               |       |                | _         |           |        |              | +                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| 40ml VOA VIAL TRAVEL BLANK                                  |       |                |           |           |        |              | <u> </u>                    | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                |                      |
| ADRI VOA VIAL                                               |       |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| QT EPA 1664B                                                |       |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                | +                    |
| TDDOR                                                       |       |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                 |                                |                      |
| RADIOLOGICAL                                                |       |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                | +!                   |
| BACTERIOLOGICAL                                             |       |                |           |           |        |              |                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                | +                    |
| 10 mLVOA VIAL-504                                           | _     |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | <u> </u>                       | ┼──╢                 |
| 2T EPA 508/608.3/8081A                                      | -     |                |           |           |        |              |                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | +                              | +                    |
| 2T EPA 515.1/8151A                                          | _     |                |           |           | _      |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 1                              | <u>+</u> [           |
| 0T EPA 525.2                                                | _     |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| IT EPA 525.2 TRAVEL BLANK                                   |       |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| 0ml EPA 531.1                                               | _     |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| az EPA 548.1                                                |       |                |           |           |        |              |                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                |                      |
| T EPA 549,2                                                 |       |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| T EPA 8015M                                                 | +     |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| T EPA 8270C                                                 |       |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| rt/16mr/32or AMBER                                          | -     |                |           |           | +      |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| g/16ex/32oz JAR                                             | +     |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| ML SLEEVE                                                   | +     |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| BVIAL :                                                     | 1-    | -+             |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| ASTIC BAG                                                   |       |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| DLAR BAG                                                    |       |                |           |           |        |              |                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                |                      |
| RROUS IRON                                                  | 1     |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| CORE                                                        |       |                |           |           |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| ART KIT                                                     | 1     |                |           | -         |        |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                |                      |
| MMA CANISTER GL                                             | Í     |                |           |           | A      |              |                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                |                      |
| nments:                                                     |       |                |           |           |        |              |                             | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R                 |                                |                      |
| Actual / C = Corrected                                      | ~     |                |           | Date/Tin  | ie:_4- | 13-2         |                             | DA_<br>SAMPCerMa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dPerfectil.All_DC | Rev 23 0                       | 5/20/22<br>EC/me 200 |



Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

#### Laboratory / Client Sample Cross Reference

| Laboratory  | Client Sample Informati | on                        |                |                  |
|-------------|-------------------------|---------------------------|----------------|------------------|
| 2307358-01  | COC Number:             |                           | Receive Date:  | 04/13/2023 10:20 |
|             | Project Number:         |                           | Sampling Date: | 04/12/2023 04:04 |
|             | Sampling Location:      |                           | Sample Depth:  |                  |
|             | Sampling Point:         | AA-710-20230412-0105      | Lab Matrix:    | Air              |
|             | Sampled By:             | Travis Clow               | Sample Type:   | Vapor or Air     |
| 222222 00   |                         |                           |                |                  |
| 2307358-02  | COC Number:             |                           | Receive Date:  | 04/13/2023 10:20 |
|             | Project Number:         |                           | Sampling Date: | 04/12/2023 04:10 |
|             | Sampling Location:      |                           | Sample Depth:  |                  |
|             | Sampling Point:         | AA-10-20230412-0110       | Lab Matrix:    | Air              |
|             | Sampled By:             | Travis Clow               | Sample Type:   | Vapor or Air     |
| 2307358-03  | COC Number:             |                           | Receive Date:  | 04/13/2023 10:20 |
|             | Project Number:         |                           | Sampling Date: | 04/12/2023 03:57 |
|             | Sampling Location:      |                           | Sample Depth:  |                  |
|             | Sampling Point:         | AA-710/10-20230412-0100   | Lab Matrix:    | Air              |
|             | Sampled By:             | Travis Clow               | Sample Type:   | Vapor or Air     |
| 2307358-04  | COC Number:             |                           | Receive Date:  | 04/13/2023 10:20 |
| 2007.000 01 |                         |                           |                | 04/12/2023 03:55 |
|             | Project Number:         |                           | Sampling Date: |                  |
|             | Sampling Location:      |                           | Sample Depth:  | <br>A in         |
|             | Sampling Point:         | AA-CT-20230412-0055       | Lab Matrix:    | Air              |
|             | Sampled By:             | Travis Clow               | Sample Type:   | Vapor or Air     |
| 2307358-05  | COC Number:             |                           | Receive Date:  | 04/13/2023 10:20 |
|             | Project Number:         |                           | Sampling Date: | 04/12/2023 10:25 |
|             | Sampling Location:      |                           | Sample Depth:  |                  |
|             | Sampling Point:         | AA-710-20230412-0745-R    | Lab Matrix:    | Air              |
|             | Sampled By:             | Travis Clow               | Sample Type:   | Vapor or Air     |
| 2307358-06  | COC Number:             |                           | Receive Date:  | 04/13/2023 10:20 |
|             | Project Number:         |                           | Sampling Date: | 04/12/2023 10:05 |
|             | Sampling Location:      |                           | Sample Depth:  |                  |
|             | Sampling Point:         | AA-10-20230412-0705       | Lab Matrix:    | Air              |
|             | Sampled By:             | Travis Clow               | Sample Type:   | Vapor or Air     |
| 2307358-07  |                         |                           | Desister Det   | 04/40/0000 40.00 |
| 230/330-0/  | COC Number:             |                           | Receive Date:  | 04/13/2023 10:20 |
|             | Project Number:         |                           | Sampling Date: | 04/12/2023 10:32 |
|             | Sampling Location:      |                           | Sample Depth:  |                  |
|             | Sampling Point:         | AA-710/10-20230412-0750-R | Lab Matrix:    | Air              |
|             | Sampled By:             | Travis Clow               | Sample Type:   | Vapor or Air     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report apply to the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 41001420658 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 05/02/2023 8:27 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

#### Laboratory / Client Sample Cross Reference

| Client Sample Informati        | on                                                                      |                                                                                                |                                                                                                                                                                                    |
|--------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COC Number:                    |                                                                         | Receive Date:                                                                                  | 04/13/2023 10:20                                                                                                                                                                   |
| Project Number:                |                                                                         | Sampling Date:                                                                                 | 04/12/2023 10:35                                                                                                                                                                   |
| Sampling Location:             |                                                                         | Sample Depth:                                                                                  |                                                                                                                                                                                    |
| Sampling Point:<br>Sampled By: | AA-CT-20230412-0655<br>Travis Clow                                      | Lab Matrix:<br>Sample Type:                                                                    | Air<br>Vapor or Air                                                                                                                                                                |
|                                | COC Number:<br>Project Number:<br>Sampling Location:<br>Sampling Point: | Project Number:          Sampling Location:          Sampling Point:       AA-CT-20230412-0655 | COC Number:      Receive Date:       Project Number:      Sampling Date:       Sampling Location:      Sample Depth:       Sampling Point:     AA-CT-20230412-0655     Lab Matrix: |



Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307358-01             | Client Sampl | e Name: | AA-710-2     | 0230412-0 | 105, 4/12/2023 4 | :04:00AM, T | ravis Clow   |     |
|---------------------------------------|--------------|---------|--------------|-----------|------------------|-------------|--------------|-----|
| Constituent                           | Result       | Units   | PQL          | MDL       | Method           | MB<br>Bias  | Lab<br>Quals | DCN |
| Acetone                               | 9.8          | ug/m3   | 1.0          | 0.0075    | EPA-TO-15-SIM    | ND          | Quais        | 1   |
| Benzene                               | 0.33         | ug/m3   | 0.050        | 0.0032    | EPA-TO-15-SIM    | ND          |              | 1   |
| Benzyl chloride                       | ND           | ug/m3   | 0.50         | 0.0052    | EPA-TO-15-SIM    | ND          |              | 1   |
| Carbon tetrachloride                  | ND           | ug/m3   | 0.20         | 0.0063    | EPA-TO-15-SIM    | ND          |              | 1   |
| Chlorobenzene                         | ND           | ug/m3   | 0.10         | 0.0079    | EPA-TO-15-SIM    | ND          |              | 1   |
| Chloroform                            | ND           | ug/m3   | 0.050        | 0.0058    | EPA-TO-15-SIM    | ND          |              | 1   |
| ,2-Dibromoethane                      | ND           | ug/m3   | 0.20         | 0.014     | EPA-TO-15-SIM    | ND          |              | 1   |
| ,2-Dichlorobenzene                    | ND           | ug/m3   | 0.20         | 0.011     | EPA-TO-15-SIM    | ND          |              | 1   |
| ,3-Dichlorobenzene                    | ND           | ug/m3   | 0.20         | 0.013     | EPA-TO-15-SIM    | ND          |              | 1   |
| 1,4-Dichlorobenzene                   | ND           | ug/m3   | 0.20         | 0.016     | EPA-TO-15-SIM    | ND          |              | 1   |
| Dichlorodifluoromethane               | 2.4          | ug/m3   | 0.050        | 0.0052    | EPA-TO-15-SIM    | ND          |              | 1   |
| 1,1-Dichloroethane                    | ND           | ug/m3   | 0.050        | 0.0041    | EPA-TO-15-SIM    | ND          |              | 1   |
| ,2-Dichloroethane                     | ND           | ug/m3   | 0.10         | 0.0046    | EPA-TO-15-SIM    | ND          |              | 1   |
| ,1-Dichloroethene                     | ND           | ug/m3   | 0.050        | 0.0078    | EPA-TO-15-SIM    | ND          |              | 1   |
| sis-1,2-Dichloroethene                | ND           | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM    | ND          |              | 1   |
| rans-1,2-Dichloroethene               | ND           | ug/m3   | 0.050        | 0.0075    | EPA-TO-15-SIM    | ND          |              | 1   |
| rans-1,3-Dichloropropene              | ND           | ug/m3   | 0.050        | 0.013     | EPA-TO-15-SIM    | ND          |              | 1   |
| I,1-Difluoroethane                    | ND           | ug/m3   | 5.0          | 0.0027    | EPA-TO-15-SIM    | ND          |              | 1   |
| Ethylbenzene                          | 0.17         | ug/m3   | 0.050        | 0.017     | EPA-TO-15-SIM    | ND          |              | 1   |
| Nethylene chloride                    | ND           | ug/m3   | 0.20         | 0.0077    | EPA-TO-15-SIM    | ND          |              | 1   |
| etrachloroethene                      | ND           | ug/m3   | 0.10         | 0.011     | EPA-TO-15-SIM    | ND          |              | 1   |
| oluene                                | 0.95         | ug/m3   | 0.10         | 0.0062    | EPA-TO-15-SIM    | ND          |              | 1   |
| ,1,1-Trichloroethane                  | ND           | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM    | ND          |              | 1   |
| ,1,2-Trichloroethane                  | ND           | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM    | ND          |              | 1   |
| richloroethene                        | ND           | ug/m3   | 0.10         | 0.0095    | EPA-TO-15-SIM    | ND          |              | 1   |
| Frichlorofluoromethane                | 1.5          | ug/m3   | 0.050        | 0.0057    | EPA-TO-15-SIM    | ND          |              | 1   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.67         | ug/m3   | 0.10         | 0.0078    | EPA-TO-15-SIM    | ND          |              | 1   |
| /inyl chloride                        | ND           | ug/m3   | 0.020        | 0.0046    | EPA-TO-15-SIM    | ND          |              | 1   |
| o- & m-Xylenes                        | 0.53         | ug/m3   | 0.050        | 0.0082    | EPA-TO-15-SIM    | ND          |              | 1   |
| o-Xylene                              | 0.20         | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM    | ND          |              | 1   |
| Fotal Xylenes                         | 0.73         | ug/m3   | 0.10         | 0.013     | EPA-TO-15-SIM    | ND          |              | 1   |
| 4-Bromofluorobenzene (Surrogate)      | 101          | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM    |             |              | 1   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2307358-01    | Client San     | ple Name:      | AA-710-20230 | s Clow     |          |          |           |
|---------------|---------------|----------------|----------------|--------------|------------|----------|----------|-----------|
|               |               | Run            |                |              |            | QC       |          |           |
| DCN           | Method        | Prep Date      | Date/Time      | Analyst      | Instrument | Dilution | Batch ID |           |
| 1             | EPA-TO-15-SIM | 04/18/23 13:28 | 04/19/23 01:50 | BEP          | MS-A2      | 1        | B164390  | EPA TO-15 |

DCN = Data Continuation Number



Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307358-01 | Client Sampl | e Name: | AA-710-20 | 0230412-0 | 105, 4/12/2023 | 4:04:00AM, Tr | avis Clow    |     |
|----------------|------------|--------------|---------|-----------|-----------|----------------|---------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL       | MDL       | Method         | MB<br>Bias    | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 18           | ppmv    | 2.0       | 1.8       | ASTM-D1946     | ND            |              | 1   |

|     |            |                | Run            |         |            |          | QC       |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/01/23 08:47 | 05/01/23 14:29 | RMK     | GC-A1      | 1        | B165213  | No Prep     |

DCN = Data Continuation Number



Reported: 05/02/2023 8:27 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23073                | 58-02 Client Samp | le Name: | AA-10-20     | 230412-01 | 10, 4/12/2023 4:1 | 0:00AM, Tra | ivis Clow    | Clow |  |  |
|-------------------------------------|-------------------|----------|--------------|-----------|-------------------|-------------|--------------|------|--|--|
| Constituent                         | Result            | Units    | PQL          | MDL       | Method            | MB<br>Bias  | Lab<br>Quals | DCN  |  |  |
| Acetone                             | 4.9               | ug/m3    | 1.0          | 0.0075    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| Benzene                             | 0.39              | ug/m3    | 0.050        | 0.0032    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| Benzyl chloride                     | ND                | ug/m3    | 0.50         | 0.0052    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| Carbon tetrachloride                | ND                | ug/m3    | 0.20         | 0.0063    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| Chlorobenzene                       | ND                | ug/m3    | 0.10         | 0.0079    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| Chloroform                          | ND                | ug/m3    | 0.050        | 0.0058    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| 1,2-Dibromoethane                   | ND                | ug/m3    | 0.20         | 0.014     | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| 1,2-Dichlorobenzene                 | ND                | ug/m3    | 0.20         | 0.011     | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| 1,3-Dichlorobenzene                 | ND                | ug/m3    | 0.20         | 0.013     | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| 1,4-Dichlorobenzene                 | ND                | ug/m3    | 0.20         | 0.016     | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| Dichlorodifluoromethane             | 2.5               | ug/m3    | 0.050        | 0.0052    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| 1,1-Dichloroethane                  | ND                | ug/m3    | 0.050        | 0.0041    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| 1,2-Dichloroethane                  | ND                | ug/m3    | 0.10         | 0.0046    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| I,1-Dichloroethene                  | ND                | ug/m3    | 0.050        | 0.0078    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| cis-1,2-Dichloroethene              | ND                | ug/m3    | 0.050        | 0.0044    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| rans-1,2-Dichloroethene             | ND                | ug/m3    | 0.050        | 0.0075    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| rans-1,3-Dichloropropene            | ND                | ug/m3    | 0.050        | 0.013     | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| I,1-Difluoroethane                  | ND                | ug/m3    | 5.0          | 0.0027    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| Ethylbenzene                        | 0.18              | ug/m3    | 0.050        | 0.017     | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| Methylene chloride                  | ND                | ug/m3    | 0.20         | 0.0077    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| Tetrachloroethene                   | ND                | ug/m3    | 0.10         | 0.011     | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| Toluene                             | 1.0               | ug/m3    | 0.10         | 0.0062    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| 1,1,1-Trichloroethane               | ND                | ug/m3    | 0.10         | 0.0055    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| ,1,2-Trichloroethane                | ND                | ug/m3    | 0.10         | 0.0055    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| Trichloroethene                     | ND                | ug/m3    | 0.10         | 0.0095    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| Trichlorofluoromethane              | 1.5               | ug/m3    | 0.050        | 0.0057    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | ane 0.69          | ug/m3    | 0.10         | 0.0078    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| /inyl chloride                      | ND                | ug/m3    | 0.020        | 0.0046    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| o- & m-Xylenes                      | 0.58              | ug/m3    | 0.050        | 0.0082    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| o-Xylene                            | 0.22              | ug/m3    | 0.050        | 0.0044    | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| Fotal Xylenes                       | 0.80              | ug/m3    | 0.10         | 0.013     | EPA-TO-15-SIM     | ND          |              | 1    |  |  |
| 4-Bromofluorobenzene (Surrogate     | e) 98.9           | %        | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM     |             |              | 1    |  |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2307358-02    | Client San     | nple Name:     | AA-10-202304 | 12-0110, 4/12/2 | Clow     |          |           |
|---------------|---------------|----------------|----------------|--------------|-----------------|----------|----------|-----------|
| Run           |               |                |                |              |                 |          | QC       |           |
| DCN           | Method        | Prep Date      | Date/Time      | Analyst      | Instrument      | Dilution | Batch ID |           |
| 1             | EPA-TO-15-SIM | 04/18/23 13:28 | 04/19/23 02:33 | BEP          | MS-A2           | 1        | B164390  | EPA TO-15 |

DCN = Data Continuation Number



Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307358-02 | Client Sampl | e Name: | AA-10-202 | AA-10-20230412-0110, 4/12/2023 |            | 4:10:00AM, Tra | vis Clow     |     |
|----------------|------------|--------------|---------|-----------|--------------------------------|------------|----------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL       | MDL                            | Method     | MB<br>Bias     | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 2.1          | ppmv    | 2.0       | 1.8                            | ASTM-D1946 | ND             |              | 1   |

|     |            |                | Run            |         |            |          | QC       |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/01/23 08:47 | 05/01/23 14:49 | RMK     | GC-A1      | 1        | B165213  | No Prep     |

DCN = Data Continuation Number



Reported: 05/02/2023 8:27 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23073               | 58-03 Client Samp | le Name: | AA-710/1     | 0-20230412 | 2-0100, 4/12/2023 | 3:57:00AN  | I, Travis Clow |     |
|------------------------------------|-------------------|----------|--------------|------------|-------------------|------------|----------------|-----|
| Constituent                        | Result            | Units    | PQL          | MDL        | Method            | MB<br>Bias | Lab<br>Quals   | DCN |
| Acetone                            | 9.3               | ug/m3    | 1.0          | 0.0075     | EPA-TO-15-SIM     | ND         | Quais          | 1   |
| Benzene                            | 0.39              | ug/m3    | 0.050        | 0.0032     | EPA-TO-15-SIM     | ND         |                | 1   |
| Benzyl chloride                    | ND                | ug/m3    | 0.50         | 0.0052     | EPA-TO-15-SIM     | ND         |                | 1   |
| Carbon tetrachloride               | ND                | ug/m3    | 0.20         | 0.0063     | EPA-TO-15-SIM     | ND         |                | 1   |
| Chlorobenzene                      | ND                | ug/m3    | 0.10         | 0.0079     | EPA-TO-15-SIM     | ND         |                | 1   |
| Chloroform                         | ND                | ug/m3    | 0.050        | 0.0058     | EPA-TO-15-SIM     | ND         |                | 1   |
| 1,2-Dibromoethane                  | ND                | ug/m3    | 0.20         | 0.014      | EPA-TO-15-SIM     | ND         |                | 1   |
| l,2-Dichlorobenzene                | ND                | ug/m3    | 0.20         | 0.011      | EPA-TO-15-SIM     | ND         |                | 1   |
| 1,3-Dichlorobenzene                | ND                | ug/m3    | 0.20         | 0.013      | EPA-TO-15-SIM     | ND         |                | 1   |
| 1,4-Dichlorobenzene                | ND                | ug/m3    | 0.20         | 0.016      | EPA-TO-15-SIM     | ND         |                | 1   |
| Dichlorodifluoromethane            | 2.4               | ug/m3    | 0.050        | 0.0052     | EPA-TO-15-SIM     | ND         |                | 1   |
| I,1-Dichloroethane                 | ND                | ug/m3    | 0.050        | 0.0041     | EPA-TO-15-SIM     | ND         |                | 1   |
| ,2-Dichloroethane                  | ND                | ug/m3    | 0.10         | 0.0046     | EPA-TO-15-SIM     | ND         |                | 1   |
| ,1-Dichloroethene                  | ND                | ug/m3    | 0.050        | 0.0078     | EPA-TO-15-SIM     | ND         |                | 1   |
| sis-1,2-Dichloroethene             | ND                | ug/m3    | 0.050        | 0.0044     | EPA-TO-15-SIM     | ND         |                | 1   |
| rans-1,2-Dichloroethene            | ND                | ug/m3    | 0.050        | 0.0075     | EPA-TO-15-SIM     | ND         |                | 1   |
| rans-1,3-Dichloropropene           | ND                | ug/m3    | 0.050        | 0.013      | EPA-TO-15-SIM     | ND         |                | 1   |
| I,1-Difluoroethane                 | ND                | ug/m3    | 5.0          | 0.0027     | EPA-TO-15-SIM     | ND         |                | 1   |
| Ethylbenzene                       | 0.19              | ug/m3    | 0.050        | 0.017      | EPA-TO-15-SIM     | ND         |                | 1   |
| Nethylene chloride                 | ND                | ug/m3    | 0.20         | 0.0077     | EPA-TO-15-SIM     | ND         |                | 1   |
| etrachloroethene                   | ND                | ug/m3    | 0.10         | 0.011      | EPA-TO-15-SIM     | ND         |                | 1   |
| oluene                             | 1.1               | ug/m3    | 0.10         | 0.0062     | EPA-TO-15-SIM     | ND         |                | 1   |
| 1,1,1-Trichloroethane              | ND                | ug/m3    | 0.10         | 0.0055     | EPA-TO-15-SIM     | ND         |                | 1   |
| ,1,2-Trichloroethane               | ND                | ug/m3    | 0.10         | 0.0055     | EPA-TO-15-SIM     | ND         |                | 1   |
| Frichloroethene                    | ND                | ug/m3    | 0.10         | 0.0095     | EPA-TO-15-SIM     | ND         |                | 1   |
| Frichlorofluoromethane             | 1.5               | ug/m3    | 0.050        | 0.0057     | EPA-TO-15-SIM     | ND         |                | 1   |
| 1,1,2-Trichloro-1,2,2-trifluoroeth | ane 0.68          | ug/m3    | 0.10         | 0.0078     | EPA-TO-15-SIM     | ND         |                | 1   |
| /inyl chloride                     | ND                | ug/m3    | 0.020        | 0.0046     | EPA-TO-15-SIM     | ND         |                | 1   |
| o- & m-Xylenes                     | 0.65              | ug/m3    | 0.050        | 0.0082     | EPA-TO-15-SIM     | ND         |                | 1   |
| o-Xylene                           | 0.24              | ug/m3    | 0.050        | 0.0044     | EPA-TO-15-SIM     | ND         |                | 1   |
| Fotal Xylenes                      | 0.89              | ug/m3    | 0.10         | 0.013      | EPA-TO-15-SIM     | ND         |                | 1   |
| 4-Bromofluorobenzene (Surrogate    | e) 101            | %        | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM     |            |                | 1   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | : 2307358-03  | Client San     | nple Name:     | AA-710/10-20 | 230412-0100, 4 | 0412-0100, 4/12/2023 3:57:00AM, Travis Clow |          |           |  |
|---------------|---------------|----------------|----------------|--------------|----------------|---------------------------------------------|----------|-----------|--|
|               |               |                | Run            |              |                |                                             | QC       |           |  |
| DCN           | Method        | Prep Date      | Date/Time      | Analyst      | Instrument     | Dilution                                    | Batch ID |           |  |
| 1             | EPA-TO-15-SIM | 04/18/23 13:28 | 04/19/23 03:16 | BEP          | MS-A2          | 1                                           | B164390  | EPA TO-15 |  |

DCN = Data Continuation Number



Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307358-03 | Client Sampl | e Name: | AA-710/10 | 0-2023041 | 2-0100, 4/12/2023 | 3:57:00AM  | , Travis Clow |     |
|----------------|------------|--------------|---------|-----------|-----------|-------------------|------------|---------------|-----|
| Constituent    |            | Result       | Units   | PQL       | MDL       | Method            | MB<br>Bias | Lab<br>Quals  | DCN |
| Methane (CH4)  |            | 3.0          | ppmv    | 2.0       | 1.8       | ASTM-D1946        | ND         |               | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/01/23 08:47 | 05/01/23 15:09 | RMK     | GC-A1      | 1        | B165213  | No Prep     |

DCN = Data Continuation Number



Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307358-0             | 04 Client Sampl | e Name: | AA-CT-20     | 230412-00 | 55, 4/12/2023 3:: | 55:00AM, Tra | avis Clow    |     |
|--------------------------------------|-----------------|---------|--------------|-----------|-------------------|--------------|--------------|-----|
| Constituent                          | Result          | Units   | PQL          | MDL       | Method            | MB<br>Bias   | Lab<br>Quals | DCN |
| Acetone                              | 5.5             | ug/m3   | 1.0          | 0.0075    | EPA-TO-15-SIM     | ND           | Quais        | 1   |
| Benzene                              | 0.36            | ug/m3   | 0.050        | 0.0032    | EPA-TO-15-SIM     | ND           |              | 1   |
| Benzyl chloride                      | ND              | ug/m3   | 0.50         | 0.0052    | EPA-TO-15-SIM     | ND           |              | 1   |
| Carbon tetrachloride                 | ND              | ug/m3   | 0.20         | 0.0063    | EPA-TO-15-SIM     | ND           |              | 1   |
| Chlorobenzene                        | ND              | ug/m3   | 0.10         | 0.0079    | EPA-TO-15-SIM     | ND           |              | 1   |
| Chloroform                           | ND              | ug/m3   | 0.050        | 0.0058    | EPA-TO-15-SIM     | ND           |              | 1   |
| 1,2-Dibromoethane                    | ND              | ug/m3   | 0.20         | 0.014     | EPA-TO-15-SIM     | ND           |              | 1   |
| ,2-Dichlorobenzene                   | ND              | ug/m3   | 0.20         | 0.011     | EPA-TO-15-SIM     | ND           |              | 1   |
| ,3-Dichlorobenzene                   | ND              | ug/m3   | 0.20         | 0.013     | EPA-TO-15-SIM     | ND           |              | 1   |
| 1,4-Dichlorobenzene                  | ND              | ug/m3   | 0.20         | 0.016     | EPA-TO-15-SIM     | ND           |              | 1   |
| Dichlorodifluoromethane              | 2.4             | ug/m3   | 0.050        | 0.0052    | EPA-TO-15-SIM     | ND           |              | 1   |
| I,1-Dichloroethane                   | ND              | ug/m3   | 0.050        | 0.0041    | EPA-TO-15-SIM     | ND           |              | 1   |
| ,2-Dichloroethane                    | ND              | ug/m3   | 0.10         | 0.0046    | EPA-TO-15-SIM     | ND           |              | 1   |
| ,1-Dichloroethene                    | ND              | ug/m3   | 0.050        | 0.0078    | EPA-TO-15-SIM     | ND           |              | 1   |
| is-1,2-Dichloroethene                | ND              | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM     | ND           |              | 1   |
| rans-1,2-Dichloroethene              | ND              | ug/m3   | 0.050        | 0.0075    | EPA-TO-15-SIM     | ND           |              | 1   |
| rans-1,3-Dichloropropene             | ND              | ug/m3   | 0.050        | 0.013     | EPA-TO-15-SIM     | ND           |              | 1   |
| I,1-Difluoroethane                   | ND              | ug/m3   | 5.0          | 0.0027    | EPA-TO-15-SIM     | ND           |              | 1   |
| Ethylbenzene                         | 0.20            | ug/m3   | 0.050        | 0.017     | EPA-TO-15-SIM     | ND           |              | 1   |
| Nethylene chloride                   | ND              | ug/m3   | 0.20         | 0.0077    | EPA-TO-15-SIM     | ND           |              | 1   |
| etrachloroethene                     | ND              | ug/m3   | 0.10         | 0.011     | EPA-TO-15-SIM     | ND           |              | 1   |
| oluene                               | 1.6             | ug/m3   | 0.10         | 0.0062    | EPA-TO-15-SIM     | ND           |              | 1   |
| ,1,1-Trichloroethane                 | ND              | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM     | ND           |              | 1   |
| ,1,2-Trichloroethane                 | ND              | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM     | ND           |              | 1   |
| richloroethene                       | ND              | ug/m3   | 0.10         | 0.0095    | EPA-TO-15-SIM     | ND           |              | 1   |
| Frichlorofluoromethane               | 1.5             | ug/m3   | 0.050        | 0.0057    | EPA-TO-15-SIM     | ND           |              | 1   |
| ,1,2-Trichloro-1,2,2-trifluoroethane | 0.70            | ug/m3   | 0.10         | 0.0078    | EPA-TO-15-SIM     | ND           |              | 1   |
| /inyl chloride                       | ND              | ug/m3   | 0.020        | 0.0046    | EPA-TO-15-SIM     | ND           |              | 1   |
| o- & m-Xylenes                       | 0.69            | ug/m3   | 0.050        | 0.0082    | EPA-TO-15-SIM     | ND           |              | 1   |
| o-Xylene                             | 0.24            | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM     | ND           |              | 1   |
| Total Xylenes                        | 0.93            | ug/m3   | 0.10         | 0.013     | EPA-TO-15-SIM     | ND           |              | 1   |
| 4-Bromofluorobenzene (Surrogate)     | 95.5            | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM     |              |              | 1   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1001420658 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2307358-04    | Client San     | ient Sample Name: AA-CT-20230412-0055, 4/12/2023 3:55:00AM, Travis Clow |         |            |          |          |           |
|---------------|---------------|----------------|-------------------------------------------------------------------------|---------|------------|----------|----------|-----------|
|               | QC            |                |                                                                         |         |            |          |          |           |
| DCN           | Method        | Prep Date      | Date/Time                                                               | Analyst | Instrument | Dilution | Batch ID |           |
| 1             | EPA-TO-15-SIM | 04/18/23 13:28 | 04/19/23 04:01                                                          | BEP     | MS-A2      | 1        | B164390  | EPA TO-15 |

DCN = Data Continuation Number



Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307358-04 | Client Sampl | e Name: | AA-CT-20230412-0055, 4/12/2023 |     |            | 3:55:00AM, Tra | avis Clow    |     |
|----------------|------------|--------------|---------|--------------------------------|-----|------------|----------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL                            | MDL | Method     | MB<br>Bias     | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 11           | ppmv    | 2.0                            | 1.8 | ASTM-D1946 | ND             |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/01/23 08:47 | 05/01/23 15:30 | RMK     | GC-A1      | 1        | B165213  | No Prep     |

DCN = Data Continuation Number



Reported: 05/02/2023 8:27 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307358                | 3-06 Client Sample | e Name: | AA-10-20     | 230412-07 | 05, 4/12/2023 10: | 05:00AM, Tr | avis Clow      |     |
|---------------------------------------|--------------------|---------|--------------|-----------|-------------------|-------------|----------------|-----|
| Constituent                           | Result             | Units   | PQL          | MDL       | Method            | MB<br>Bias  | Lab            | DCN |
| Acetone                               | 6.1                | ug/m3   | 10           | 0.075     | EPA-TO-15-SIM     | Bias<br>ND  | Quals<br>J,A01 | 1   |
| Benzene                               | 0.73               | ug/m3   | 0.050        | 0.0032    | EPA-TO-15-SIM     | ND          |                | 2   |
| Benzyl chloride                       | ND                 | ug/m3   | 0.50         | 0.0052    | EPA-TO-15-SIM     | ND          |                | 2   |
| Carbon tetrachloride                  | ND                 | ug/m3   | 0.20         | 0.0063    | EPA-TO-15-SIM     | ND          |                | 2   |
| Chlorobenzene                         | ND                 | ug/m3   | 0.10         | 0.0079    | EPA-TO-15-SIM     | ND          |                | 2   |
| Chloroform                            | ND                 | ug/m3   | 0.050        | 0.0058    | EPA-TO-15-SIM     | ND          |                | 2   |
| 1,2-Dibromoethane                     | ND                 | ug/m3   | 0.20         | 0.014     | EPA-TO-15-SIM     | ND          |                | 2   |
| 1,2-Dichlorobenzene                   | ND                 | ug/m3   | 0.20         | 0.011     | EPA-TO-15-SIM     | ND          |                | 2   |
| 1,3-Dichlorobenzene                   | ND                 | ug/m3   | 0.20         | 0.013     | EPA-TO-15-SIM     | ND          |                | 2   |
| 1,4-Dichlorobenzene                   | ND                 | ug/m3   | 0.20         | 0.016     | EPA-TO-15-SIM     | ND          |                | 2   |
| Dichlorodifluoromethane               | 2.4                | ug/m3   | 0.050        | 0.0052    | EPA-TO-15-SIM     | ND          |                | 2   |
| 1,1-Dichloroethane                    | ND                 | ug/m3   | 0.050        | 0.0041    | EPA-TO-15-SIM     | ND          |                | 2   |
| 1,2-Dichloroethane                    | ND                 | ug/m3   | 0.10         | 0.0046    | EPA-TO-15-SIM     | ND          |                | 2   |
| 1,1-Dichloroethene                    | ND                 | ug/m3   | 0.050        | 0.0078    | EPA-TO-15-SIM     | ND          |                | 2   |
| cis-1,2-Dichloroethene                | ND                 | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM     | ND          |                | 2   |
| trans-1,2-Dichloroethene              | ND                 | ug/m3   | 0.050        | 0.0075    | EPA-TO-15-SIM     | ND          |                | 2   |
| trans-1,3-Dichloropropene             | ND                 | ug/m3   | 0.050        | 0.013     | EPA-TO-15-SIM     | ND          |                | 2   |
| 1,1-Difluoroethane                    | ND                 | ug/m3   | 5.0          | 0.0027    | EPA-TO-15-SIM     | ND          |                | 2   |
| Ethylbenzene                          | 0.54               | ug/m3   | 0.050        | 0.017     | EPA-TO-15-SIM     | ND          |                | 2   |
| Methylene chloride                    | ND                 | ug/m3   | 0.20         | 0.0077    | EPA-TO-15-SIM     | ND          |                | 2   |
| Tetrachloroethene                     | ND                 | ug/m3   | 0.10         | 0.011     | EPA-TO-15-SIM     | ND          |                | 2   |
| Toluene                               | 2.2                | ug/m3   | 1.0          | 0.062     | EPA-TO-15-SIM     | ND          | A01            | 1   |
| 1,1,1-Trichloroethane                 | ND                 | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM     | ND          |                | 2   |
| 1,1,2-Trichloroethane                 | ND                 | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM     | ND          |                | 2   |
| Trichloroethene                       | ND                 | ug/m3   | 0.10         | 0.0095    | EPA-TO-15-SIM     | ND          |                | 2   |
| Trichlorofluoromethane                | 1.5                | ug/m3   | 0.050        | 0.0057    | EPA-TO-15-SIM     | ND          |                | 2   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | e 0.69             | ug/m3   | 0.10         | 0.0078    | EPA-TO-15-SIM     | ND          |                | 2   |
| Vinyl chloride                        | ND                 | ug/m3   | 0.020        | 0.0046    | EPA-TO-15-SIM     | ND          |                | 2   |
| p- & m-Xylenes                        | 2.4                | ug/m3   | 0.050        | 0.0082    | EPA-TO-15-SIM     | ND          |                | 2   |
| o-Xylene                              | 0.79               | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM     | ND          |                | 2   |
| Total Xylenes                         | 3.2                | ug/m3   | 0.10         | 0.013     | EPA-TO-15-SIM     | ND          |                | 2   |
| 4-Bromofluorobenzene (Surrogate)      | 89.9               | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM     |             |                | 1   |
| 4-Bromofluorobenzene (Surrogate)      | 106                | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM     |             |                | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307358-06 |               | Client San     | nple Name:     | AA-10-202304 | 0-20230412-0705, 4/12/2023 10:05:00AM, Travis Clow |          |          |           |  |
|---------------------------|---------------|----------------|----------------|--------------|----------------------------------------------------|----------|----------|-----------|--|
|                           |               |                | Run            |              |                                                    |          | QC       |           |  |
| DCN                       | Method        | Prep Date      | Date/Time      | Analyst      | Instrument                                         | Dilution | Batch ID |           |  |
| 1                         | EPA-TO-15-SIM | 04/18/23 13:28 | 04/20/23 21:13 | BEP          | MS-A2                                              | 10       | B164390  | EPA TO-15 |  |
| 2                         | EPA-TO-15-SIM | 04/18/23 13:28 | 04/19/23 04:45 | BEP          | MS-A2                                              | 1        | B164390  | EPA TO-15 |  |

DCN = Data Continuation Number



Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307358-06 | Client Sampl | e Name: | AA-10-20230412-0705, 4/12/2023 |     |            | 0:05:00AM, Tra | avis Clow    |     |
|----------------|------------|--------------|---------|--------------------------------|-----|------------|----------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL                            | MDL | Method     | MB<br>Bias     | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 32           | ppmv    | 2.0                            | 1.8 | ASTM-D1946 | ND             |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/01/23 08:47 | 05/01/23 15:50 | RMK     | GC-A1      | 1        | B165213  | No Prep     |

DCN = Data Continuation Number



Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Method Blank Analysis**

| Constituent                           | QC Sample ID | MB Result | Units | PQL     | MDL           | Lab Quals | Run # |
|---------------------------------------|--------------|-----------|-------|---------|---------------|-----------|-------|
| QC Batch ID: B164390                  |              |           |       |         |               |           |       |
| Acetone                               | B164390-BLK1 | ND        | ug/m3 | 1.0     | 0.0075        |           | 1     |
| Benzene                               | B164390-BLK1 | ND        | ug/m3 | 0.050   | 0.0032        |           | 1     |
| Benzyl chloride                       | B164390-BLK1 | ND        | ug/m3 | 0.50    | 0.0052        |           | 1     |
| Carbon tetrachloride                  | B164390-BLK1 | ND        | ug/m3 | 0.20    | 0.0063        |           | 1     |
| Chlorobenzene                         | B164390-BLK1 | ND        | ug/m3 | 0.10    | 0.0079        |           | 1     |
| Chloroform                            | B164390-BLK1 | ND        | ug/m3 | 0.050   | 0.0058        |           | 1     |
| 1,2-Dibromoethane                     | B164390-BLK1 | ND        | ug/m3 | 0.20    | 0.014         |           | 1     |
| 1,2-Dichlorobenzene                   | B164390-BLK1 | ND        | ug/m3 | 0.20    | 0.011         |           | 1     |
| 1,3-Dichlorobenzene                   | B164390-BLK1 | ND        | ug/m3 | 0.20    | 0.013         |           | 1     |
| 1,4-Dichlorobenzene                   | B164390-BLK1 | ND        | ug/m3 | 0.20    | 0.016         |           | 1     |
| Dichlorodifluoromethane               | B164390-BLK1 | ND        | ug/m3 | 0.050   | 0.0052        |           | 1     |
| 1,1-Dichloroethane                    | B164390-BLK1 | ND        | ug/m3 | 0.050   | 0.0041        |           | 1     |
| 1,2-Dichloroethane                    | B164390-BLK1 | ND        | ug/m3 | 0.10    | 0.0046        |           | 1     |
| 1,1-Dichloroethene                    | B164390-BLK1 | ND        | ug/m3 | 0.050   | 0.0078        |           | 1     |
| cis-1,2-Dichloroethene                | B164390-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 1     |
| trans-1,2-Dichloroethene              | B164390-BLK1 | ND        | ug/m3 | 0.050   | 0.0075        |           | 1     |
| trans-1,3-Dichloropropene             | B164390-BLK1 | ND        | ug/m3 | 0.050   | 0.013         |           | 1     |
| 1,1-Difluoroethane                    | B164390-BLK1 | ND        | ug/m3 | 5.0     | 0.0027        |           | 1     |
| Ethylbenzene                          | B164390-BLK1 | ND        | ug/m3 | 0.050   | 0.017         |           | 1     |
| Methylene chloride                    | B164390-BLK1 | ND        | ug/m3 | 0.20    | 0.0077        |           | 1     |
| Tetrachloroethene                     | B164390-BLK1 | ND        | ug/m3 | 0.10    | 0.011         |           | 1     |
| Toluene                               | B164390-BLK1 | ND        | ug/m3 | 0.10    | 0.0062        |           | 1     |
| 1,1,1-Trichloroethane                 | B164390-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 1     |
| 1,1,2-Trichloroethane                 | B164390-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 1     |
| Trichloroethene                       | B164390-BLK1 | ND        | ug/m3 | 0.10    | 0.0095        |           | 1     |
| Trichlorofluoromethane                | B164390-BLK1 | ND        | ug/m3 | 0.050   | 0.0057        |           | 1     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | B164390-BLK1 | ND        | ug/m3 | 0.10    | 0.0078        |           | 1     |
| Vinyl chloride                        | B164390-BLK1 | ND        | ug/m3 | 0.020   | 0.0046        |           | 1     |
| p- & m-Xylenes                        | B164390-BLK1 | ND        | ug/m3 | 0.050   | 0.0082        |           | 1     |
| o-Xylene                              | B164390-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 1     |
| Total Xylenes                         | B164390-BLK1 | ND        | ug/m3 | 0.10    | 0.013         |           | 1     |
| 4-Bromofluorobenzene (Surrogate)      | B164390-BLK1 | 67.6      | %     | 50 - 15 | 0 (LCL - UCL) |           | 1     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

1001420658 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Method Blank Analysis**

|   |       | Run          |         |               |           |                |         |            |          |  |  |
|---|-------|--------------|---------|---------------|-----------|----------------|---------|------------|----------|--|--|
| F | Run # | QC Sample ID | QC Type | Method        | Prep Date | Date Time      | Analyst | Instrument | Dilution |  |  |
|   | 1     | B164390-BLK1 | PB      | EPA-TO-15-SIM | 04/18/23  | 04/18/23 22:35 | BEP     | MS-A2      | 1        |  |  |



Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

|                        | . ,             |      | •       |         |       |          | •   |                |     |       |       |  |
|------------------------|-----------------|------|---------|---------|-------|----------|-----|----------------|-----|-------|-------|--|
|                        |                 |      |         |         |       |          |     | Control Limits |     |       |       |  |
|                        |                 |      |         | Spike   |       | Percent  |     | Percent        |     | Lab   |       |  |
| Constituent            | QC Sample ID    | Туре | Result  | Level   | Units | Recovery | RPD | Recovery       | RPD | Quals | Run # |  |
| QC Batch ID: B164390   |                 |      |         |         |       |          |     |                |     |       |       |  |
| Benzene                | <br>B164390-BS1 | LCS  | 0.29318 | 0.31948 | ug/m3 | 91.8     |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.29146 | 0.31948 | ug/m3 | 91.2     | 0.6 | 70 - 130       | 30  |       | 2     |  |
| Benzyl chloride        | B164390-BS1     | LCS  | 0.57679 | 0.51772 | ug/m3 | 111      |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.57483 | 0.51772 | ug/m3 | 111      | 0.3 | 70 - 130       | 30  |       | 2     |  |
| Carbon tetrachloride   | B164390-BS1     | LCS  | 0.63593 | 0.62913 | ug/m3 | 101      |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.63951 | 0.62913 | ug/m3 | 102      | 0.6 | 70 - 130       | 30  |       | 2     |  |
| Chlorobenzene          | B164390-BS1     | LCS  | 0.48121 | 0.46036 | ug/m3 | 105      |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.48637 | 0.46036 | ug/m3 | 106      | 1.1 | 70 - 130       | 30  |       | 2     |  |
| Chloroform             | B164390-BS1     | LCS  | 0.49758 | 0.48825 | ug/m3 | 102      |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.49455 | 0.48825 | ug/m3 | 101      | 0.6 | 70 - 130       | 30  |       | 2     |  |
| 1,2-Dibromoethane      | B164390-BS1     | LCS  | 0.81745 | 0.76835 | ug/m3 | 106      |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.82321 | 0.76835 | ug/m3 | 107      | 0.7 | 70 - 130       | 30  |       | 2     |  |
| 1,2-Dichlorobenzene    | B164390-BS1     | LCS  | 0.57346 | 0.60124 | ug/m3 | 95.4     |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.56107 | 0.60124 | ug/m3 | 93.3     | 2.2 | 70 - 130       | 30  |       | 2     |  |
| 1,3-Dichlorobenzene    | B164390-BS1     | LCS  | 0.59372 | 0.60124 | ug/m3 | 98.7     |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.56841 | 0.60124 | ug/m3 | 94.5     | 4.4 | 70 - 130       | 30  |       | 2     |  |
| 1,4-Dichlorobenzene    | B164390-BS1     | LCS  | 0.55145 | 0.60124 | ug/m3 | 91.7     |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.57033 | 0.60124 | ug/m3 | 94.9     | 3.4 | 70 - 130       | 30  |       | 2     |  |
| 1,1-Dichloroethane     | B164390-BS1     | LCS  | 0.40725 | 0.40474 | ug/m3 | 101      |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.40442 | 0.40474 | ug/m3 | 99.9     | 0.7 | 70 - 130       | 30  |       | 2     |  |
| 1,2-Dichloroethane     | B164390-BS1     | LCS  | 0.39863 | 0.40474 | ug/m3 | 98.5     |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.40138 | 0.40474 | ug/m3 | 99.2     | 0.7 | 70 - 130       | 30  |       | 2     |  |
| 1,1-Dichloroethene     | B164390-BS1     | LCS  | 0.37433 | 0.39649 | ug/m3 | 94.4     |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.36672 | 0.39649 | ug/m3 | 92.5     | 2.1 | 70 - 130       | 30  |       | 2     |  |
| cis-1,2-Dichloroethene | B164390-BS1     | LCS  | 0.37346 | 0.39649 | ug/m3 | 94.2     |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.36727 | 0.39649 | ug/m3 | 92.6     | 1.7 | 70 - 130       | 30  |       | 2     |  |
| Methylene chloride     | B164390-BS1     | LCS  | 0.36151 | 0.34737 | ug/m3 | 104      |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.35964 | 0.34737 | ug/m3 | 104      | 0.5 | 70 - 130       | 30  |       | 2     |  |
| Tetrachloroethene      | B164390-BS1     | LCS  | 0.71312 | 0.67825 | ug/m3 | 105      |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.72254 | 0.67825 | ug/m3 | 107      | 1.3 | 70 - 130       | 30  |       | 2     |  |
| Toluene                | B164390-BS1     | LCS  | 0.36369 | 0.37684 | ug/m3 | 96.5     |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.35992 | 0.37684 | ug/m3 | 95.5     | 1.0 | 70 - 130       | 30  |       | 2     |  |
| 1,1,1-Trichloroethane  | B164390-BS1     | LCS  | 0.54955 | 0.54562 | ug/m3 | 101      |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.55009 | 0.54562 | ug/m3 | 101      | 0.1 | 70 - 130       | 30  |       | 2     |  |
| 1,1,2-Trichloroethane  | B164390-BS1     | LCS  | 0.59702 | 0.54562 | ug/m3 | 109      |     | 70 - 130       |     |       | 1     |  |
|                        | B164390-BSD1    | LCSD | 0.59904 | 0.54562 | ug/m3 | 110      | 0.3 | 70 - 130       | 30  |       | 2     |  |
|                        |                 |      |         |         |       |          |     |                |     |       |       |  |

#### **Quality Control Report - Laboratory Control Sample**

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



# Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

|                                  |              |      |         |         |       | Control Limits |     |          |     |       |       |  |  |
|----------------------------------|--------------|------|---------|---------|-------|----------------|-----|----------|-----|-------|-------|--|--|
|                                  |              |      |         | Spike   |       | Percent        |     | Percent  |     | Lab   |       |  |  |
| Constituent                      | QC Sample ID | Туре | Result  | Level   | Units | Recovery       | RPD | Recovery | RPD | Quals | Run # |  |  |
| QC Batch ID: B164390             |              |      |         |         |       |                |     |          |     |       |       |  |  |
| Trichloroethene                  | B164390-BS1  | LCS  | 0.55822 | 0.53737 | ug/m3 | 104            |     | 70 - 130 |     |       | 1     |  |  |
|                                  | B164390-BSD1 | LCSD | 0.55543 | 0.53737 | ug/m3 | 103            | 0.5 | 70 - 130 | 30  |       | 2     |  |  |
| Vinyl chloride                   | B164390-BS1  | LCS  | 0.23775 | 0.25562 | ug/m3 | 93.0           |     | 70 - 130 |     |       | 1     |  |  |
|                                  | B164390-BSD1 | LCSD | 0.24516 | 0.25562 | ug/m3 | 95.9           | 3.1 | 70 - 130 | 30  |       | 2     |  |  |
| p- & m-Xylenes                   | B164390-BS1  | LCS  | 0.77338 | 0.86843 | ug/m3 | 89.1           |     | 70 - 130 |     |       | 1     |  |  |
|                                  | B164390-BSD1 | LCSD | 0.75149 | 0.86843 | ug/m3 | 86.5           | 2.9 | 70 - 130 | 30  |       | 2     |  |  |
| o-Xylene                         | B164390-BS1  | LCS  | 0.39270 | 0.43421 | ug/m3 | 90.4           |     | 70 - 130 |     |       | 1     |  |  |
|                                  | B164390-BSD1 | LCSD | 0.38575 | 0.43421 | ug/m3 | 88.8           | 1.8 | 70 - 130 | 30  |       | 2     |  |  |
| Total Xylenes                    | B164390-BS1  | LCS  | 1.1661  | 1.3026  | ug/m3 | 89.5           |     | 70 - 130 |     |       | 1     |  |  |
|                                  | B164390-BSD1 | LCSD | 1.1372  | 1.3026  | ug/m3 | 87.3           | 2.5 | 70 - 130 | 30  |       | 2     |  |  |
| 4-Bromofluorobenzene (Surrogate) | B164390-BS1  | LCS  | 3.80    | 3.58    | ug/m3 | 106            |     | 50 - 150 |     |       | 1     |  |  |
|                                  | B164390-BSD1 | LCSD | 3.69    | 3.58    | ug/m3 | 103            | 3.0 | 50 - 150 |     |       | 2     |  |  |

#### **Quality Control Report - Laboratory Control Sample**

|       | Run          |         |               |           |                |         |            |          |  |
|-------|--------------|---------|---------------|-----------|----------------|---------|------------|----------|--|
| Run # | QC Sample ID | QC Type | Method        | Prep Date | Date Time      | Analyst | Instrument | Dilution |  |
| 1     | B164390-BS1  | LCS     | EPA-TO-15-SIM | 04/18/23  | 04/18/23 21:21 | BEP     | MS-A2      | 1        |  |
| 2     | B164390-BSD1 | LCSD    | EPA-TO-15-SIM | 04/18/23  | 04/18/23 22:00 | BEP     | MS-A2      | 1        |  |



Reported:05/02/20238:27Project:City TerraceProject Number:2855Project Manager:April McGuire

#### Fixed Gases by GC/TCD (ASTM D1946)

#### **Quality Control Report - Method Blank Analysis**

| Constituent            |                |         | QC Sample ID | MB Result | Units            | PQL     |            | MDL     | Lab Quals | Run # |
|------------------------|----------------|---------|--------------|-----------|------------------|---------|------------|---------|-----------|-------|
| QC Bat<br>Methane (CH4 | ch ID: B165213 |         | B165213-BLK1 | ND        | ppmv             | 2       | .0         | 1.8     |           | 1     |
| Run #                  | QC Sample ID   | QC Type | Method       | Prep Date | Run<br>Date Time | Analyst | Instrument | Dilutio | n         |       |
| 1                      | B165213-BLK1   | PB      | ASTM-D1946   | 05/01/23  | 05/01/23 14:08   | RMK     | GC-A1      | 1       |           |       |



Reported: 05/02/2023 8:27 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

### Fixed Gases by GC/TCD (ASTM D1946)

#### **Quality Control Report - Laboratory Control Sample**

|                      |              |      |        |                |       |                     |     | Control I           | imits |              |       |
|----------------------|--------------|------|--------|----------------|-------|---------------------|-----|---------------------|-------|--------------|-------|
| Constituent          | QC Sample ID | Туре | Result | Spike<br>Level | Units | Percent<br>Recovery | RPD | Percent<br>Recovery | RPD   | Lab<br>Quals | Run # |
| QC Batch ID: B165213 |              |      |        |                |       |                     |     |                     |       |              |       |
| Methane (CH4)        | B165213-BS1  | LCS  | 20026  | 18000          | ppmv  | 111                 |     | 70 - 130            |       |              | 1     |
|                      | B165213-BSD1 | LCSD | 19976  | 18000          | ppmv  | 111                 | 0.3 | 70 - 130            | 30    |              | 2     |

|       |              |         |            |           | Run            |         |            |          |
|-------|--------------|---------|------------|-----------|----------------|---------|------------|----------|
| Run # | QC Sample ID | QC Type | Method     | Prep Date | Date Time      | Analyst | Instrument | Dilution |
| 1     | B165213-BS1  | LCS     | ASTM-D1946 | 05/01/23  | 05/01/23 13:28 | RMK     | GC-A1      | 1        |
| 2     | B165213-BSD1 | LCSD    | ASTM-D1946 | 05/01/23  | 05/01/23 13:48 | RMK     | GC-A1      | 1        |



#### Reported: 05/02/2023 8:27 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

#### **Notes And Definitions**

| J Estimated Value | (CLP Flag) |
|-------------------|------------|
|-------------------|------------|

- MDL Method Detection Limit
- ND Analyte Not Detected
- Practical Quantitation Limit PQL
- A01 Detection and quantitation limits are raised due to sample dilution.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Date of Report: 05/01/2023

April McGuire

Roux Associates, Inc -Long Beach 5150 E. Pacific Coast Hwy, Suite 450 Long Beach, CA 90804

2855 **Client Project: City Terrace BCL Project:** 2307790 BCL Work Order: B474804 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 4/19/2023. If you have any questions concerning this report, please feel free to contact me.

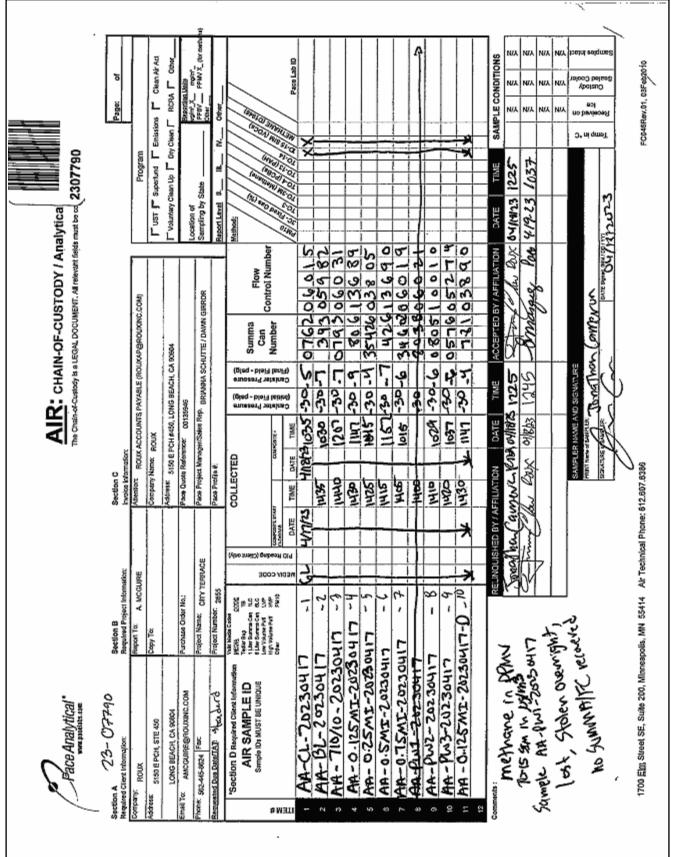
Sincerely,

Contact Person: Brianna Schutte **Client Services Rep** 

A

**Stuart Buttram Operations Manager** 

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101




#### **Table of Contents**

| Sample Information                                            |    |
|---------------------------------------------------------------|----|
| Chain of Custody and Cooler Receipt form                      |    |
| Laboratory / Client Sample Cross Reference                    | 5  |
| Sample Results                                                |    |
| 2307790-01 - AA-CL-20230417                                   |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) | 7  |
| Fixed Gases by GC/TCD (ASTM D1946)                            | 9  |
| 2307790-02 - AA-BL-20230417                                   |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307790-03 - AA-710/10-20230417                               |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307790-04 - AA-0.125MI-20230417                              |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307790-05 - AA-0.25MI-20230417                               |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307790-06 - AA-0.5MI-20230417                                |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307790-07 - AA-0.75MI-20230417                               |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307790-08 - AA-PW2-20230417                                  |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307790-09 - AA-PW3-20230417                                  |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307790-10 - AA-0.125MI-20230417-D                            |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| Quality Control Reports                                       |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Method Blank Analysis                                         |    |
| Laboratory Control Sample                                     | 39 |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| Method Blank Analysis                                         | 41 |
| Laboratory Control Sample                                     | 42 |
| Notes                                                         |    |
| Notes and Definitions                                         |    |
|                                                               |    |



#### Chain of Custody and Cooler Receipt Form for 2307790 Page 1 of 2



The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



#### Chain of Custody and Cooler Receipt Form for 2307790 Page 2 of 2

| Submission #: 23-077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FORM    |                     |                                         | RECEIP     |                 | SHIPPIN             | GC       | CONTA        | Page        | ( Of         | FREEI           |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|-----------------------------------------|------------|-----------------|---------------------|----------|--------------|-------------|--------------|-----------------|-----------------------|
| Fed Ex UPS GSC<br>Pace Lab Field Service GSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Other 🗆 | (Speci              | fy)                                     | very 🗆     | Ice C<br>Oti    | nest 🗆<br>Ier 🗆 (Sp | Neci     | one □<br>fy) | Box         |              | YES 🗆<br>W      | NO &                  |
| Refrigerant: Ice  Blue I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ce 🗆    | None                | 3 0                                     | ther 🗆     | Comme           | nts:                |          |              |             |              |                 | and the second second |
| Custody Seals Ice Chest  Intact? Yes  No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | ontaine<br>t? Yes 🗆 |                                         | None       | Com             | ments:              |          |              |             |              |                 |                       |
| All samples received? Yes Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Alls    | amples              | containe                                | rs intact? | YesàN           | 0 🗆                 |          | Descrip      | tion(s) m   | teh COC3     | Vark A          |                       |
| COC Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Emissi  | ivity:              | - (                                     | ontainer:  | Summe           | Thermom             | otor     | ID-          | cion(a) m   |              |                 |                       |
| YES ONO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tama    |                     |                                         | Paca       |                 |                     | -        |              |             | Date/T       | ime <u>4/19</u> | 10                    |
| and the second design of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tempe   | arature:            | (A)                                     | Room       | _°C /           | (c)                 | 11       | emp          | C           | Analys       | t Init M        | at 1037               |
| SAMPLE CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ŀ       |                     | 100000000000000000000000000000000000000 |            |                 | SAMP                | LEN      | UMBERS       |             |              |                 |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 1                   | 2                                       | 3          | 4               | 5                   |          | 6            | 7           | 8            | 9               | 10                    |
| OT PE UNPRES<br>40z/80z/160z PE UNPRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                     |                                         |            |                 |                     | -        |              |             |              |                 |                       |
| 2at Cr*5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                     |                                         |            |                 |                     | -        |              |             |              |                 |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                     |                                         |            |                 |                     | -        |              |             |              | -               | -                     |
| QT INORGANIC CHEMICAL METALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                     |                                         |            |                 |                     | 1        |              | *           |              |                 |                       |
| INORGANIC CHEMICAL METALS 402 / S02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /16oz   |                     |                                         |            |                 |                     |          | -            |             |              |                 |                       |
| PT CYANIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                     |                                         |            |                 |                     |          |              |             |              |                 |                       |
| PT NITROGEN FORMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                     |                                         |            | -               |                     | P        | 1            |             |              |                 |                       |
| PT TOTAL SULFIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                     |                                         |            |                 |                     | 15       | HR           |             |              |                 |                       |
| 267. NITRATE / NITRITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -       |                     |                                         |            |                 |                     | P        |              |             |              |                 | -                     |
| PT TOTAL ORGANIC CARBON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                     |                                         |            |                 | -                   | F        | 1            |             |              |                 | -                     |
| PT CHEMICAL OXYGEN DEMAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                     |                                         |            |                 |                     | 12       | N N          |             |              |                 |                       |
| IOMI VOA VIAL TRAVEL BLANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                     |                                         |            |                 | -                   | 1        | 2            | -           |              |                 |                       |
| fond VOA VIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                     |                                         |            |                 |                     | 1        | 143- ·       |             |              |                 |                       |
| 2T EPA 1664B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                     |                                         |            |                 |                     | -        |              |             |              |                 |                       |
| TODOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                     |                                         |            |                 |                     | 10       | 8            |             | -            |                 |                       |
| ADIOLOGICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                     |                                         |            |                 |                     | ŧ        | 2            |             |              |                 |                       |
| ACTERIOLOGICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                     |                                         |            |                 |                     | φ.       | 1            |             |              | -               |                       |
| 0 ml VOA VIAL- 504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                     |                                         |            |                 |                     | +        |              |             |              |                 |                       |
| T EPA 508/608.3/3031A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                     |                                         |            |                 |                     | +        |              | -           |              |                 |                       |
| T EPA 515.1/8151A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                     |                                         |            |                 |                     | +-       |              |             |              |                 |                       |
| T EPA \$25.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                     |                                         |            |                 |                     | +        |              |             |              |                 |                       |
| T EPA 525.2 TRAVEL BLANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                     |                                         |            |                 |                     | +-       |              |             |              |                 |                       |
| Onl EPA 547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                     |                                         |            |                 |                     | +-       |              |             |              |                 |                       |
| Deal EPA 531.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                     |                                         |            |                 |                     | +-       |              |             |              |                 |                       |
| REPA 548.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                     |                                         |            |                 |                     | +-       |              |             |              |                 |                       |
| T EPA 549.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                     |                                         |            |                 |                     | -        |              |             |              |                 |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                     |                                         |            |                 |                     | -        |              |             |              |                 |                       |
| T EPA 8015M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                     |                                         |            |                 |                     | -        |              |             |              |                 |                       |
| T EPA 8270C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                     |                                         |            |                 |                     | $\vdash$ |              |             |              |                 |                       |
| z/16oz/32oz_AMBER<br>z/16oz/32oz_JAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                     |                                         |            |                 |                     | -        |              |             |              |                 | <u> </u>              |
| DIL SLEEVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                     |                                         |            |                 |                     | -        |              |             |              |                 |                       |
| TR VIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                     |                                         |            |                 |                     | -        |              |             |              |                 |                       |
| ASTIC BAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                     |                                         |            |                 |                     | -        |              |             |              |                 |                       |
| DLAR BAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                     |                                         |            |                 |                     | -        |              |             |              |                 |                       |
| RROUSIRON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                     |                                         |            |                 |                     | -        |              |             |              |                 |                       |
| CORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                     |                                         |            |                 |                     | -        |              |             |              |                 | <u> </u>              |
| IART KIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                     |                                         |            |                 |                     |          |              |             |              |                 |                       |
| and the second se |         |                     |                                         | ~          |                 |                     |          |              |             |              |                 |                       |
| MMA CANISTER GL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | <i>f</i>            | A                                       | A          | A               | A                   |          | A            | A           | A            | A               | A                     |
| nments:<br>nple Nurnbering Completed By:<br>Actual / C = Corrected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                     |                                         | Date/T     | ime: <u>4</u> / | 4/23                | 1150     |              | S:WPDacUWay | PerfectLAB_D | Rev 23 (        | 16/20/22              |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 05/01/2023 14:46 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

#### Laboratory / Client Sample Cross Reference

| Laboratory | Client Sample Informati | on                  |                |                  |
|------------|-------------------------|---------------------|----------------|------------------|
| 2307790-01 | COC Number:             |                     | Receive Date:  | 04/19/2023 10:37 |
|            | Project Number:         |                     | Sampling Date: | 04/18/2023 10:35 |
|            | Sampling Location:      |                     | Sample Depth:  |                  |
|            | Sampling Point:         | AA-CL-20230417      | Lab Matrix:    | Air              |
|            | Sampled By:             | Client              | Sample Type:   | Vapor or Air     |
| 2307790-02 | COC Number:             |                     | Receive Date:  | 04/19/2023 10:37 |
|            | Project Number:         |                     | Sampling Date: | 04/18/2023 10:30 |
|            | Sampling Location:      |                     | Sample Depth:  |                  |
|            | Sampling Point:         | AA-BL-20230417      | Lab Matrix:    | Air              |
|            | Sampled By:             | Client              | Sample Type:   | Vapor or Air     |
| 307790-03  | COC Number:             |                     | Receive Date:  | 04/19/2023 10:37 |
|            | Project Number:         |                     | Sampling Date: | 04/18/2023 12:07 |
|            | Sampling Location:      |                     | Sample Depth:  |                  |
|            | Sampling Point:         | AA-710/10-20230417  | Lab Matrix:    | Air              |
|            | Sampled By:             | Client              | Sample Type:   | Vapor or Air     |
| 2307790-04 | COC Number:             |                     | Receive Date:  | 04/19/2023 10:37 |
|            | Project Number:         |                     | Sampling Date: | 04/18/2023 11:47 |
|            | Sampling Location:      |                     | Sample Depth:  |                  |
|            | Sampling Point:         | AA-0.125MI-20230417 | Lab Matrix:    | Air              |
|            | Sampled By:             | Client              | Sample Type:   | Vapor or Air     |
| 2307790-05 | COC Number:             |                     | Receive Date:  | 04/19/2023 10:37 |
|            | Project Number:         |                     | Sampling Date: | 04/18/2023 10:45 |
|            | Sampling Location:      |                     | Sample Depth:  |                  |
|            | Sampling Point:         | AA-0.25MI-20230417  | Lab Matrix:    | Air              |
|            | Sampled By:             | Client              | Sample Type:   | Vapor or Air     |
| 2307790-06 | COC Number:             |                     | Receive Date:  | 04/19/2023 10:37 |
|            | Project Number:         |                     | Sampling Date: | 04/18/2023 11:52 |
|            | Sampling Location:      |                     | Sample Depth:  |                  |
|            | Sampling Point:         | AA-0.5MI-20230417   | Lab Matrix:    | Air              |
|            | Sampled By:             | Client              | Sample Type:   | Vapor or Air     |
| 2307790-07 | COC Number:             |                     | Receive Date:  | 04/19/2023 10:37 |
|            | Project Number:         |                     | Sampling Date: | 04/18/2023 10:15 |
|            | Sampling Location:      |                     | Sample Depth:  |                  |
|            | Sampling Point:         | AA-0.75MI-20230417  | Lab Matrix:    | Air              |
|            | Sampled By:             | Client              | Sample Type:   | Vapor or Air     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 05/01/2023 14:46 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

#### Laboratory / Client Sample Cross Reference

| Laboratory | Client Sample Informati | on                    |                |                  |
|------------|-------------------------|-----------------------|----------------|------------------|
| 2307790-08 | COC Number:             |                       | Receive Date:  | 04/19/2023 10:37 |
|            | Project Number:         |                       | Sampling Date: | 04/18/2023 10:29 |
|            | Sampling Location:      |                       | Sample Depth:  |                  |
|            | Sampling Point:         | AA-PW2-20230417       | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                | Sample Type:   | Vapor or Air     |
| 2307790-09 | COC Number:             |                       | Receive Date:  | 04/19/2023 10:37 |
|            | Project Number:         |                       | Sampling Date: | 04/18/2023 10:37 |
|            | Sampling Location:      |                       | Sample Depth:  |                  |
|            | Sampling Point:         | AA-PW3-20230417       | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                | Sample Type:   | Vapor or Air     |
| 2307790-10 | COC Number:             |                       | Receive Date:  | 04/19/2023 10:37 |
|            | Project Number:         |                       | Sampling Date: | 04/18/2023 11:47 |
|            | Sampling Location:      |                       | Sample Depth:  |                  |
|            | Sampling Point:         | AA-0.125MI-20230417-D | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                | Sample Type:   | Vapor or Air     |

Page 6 of 43



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

#### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 230              | 07790-01 Clien | t Sample Name: | AA-CL-   | -20230417, 4/ | 18/2023 10:35:00 | 0AM, Client |                |     |
|---------------------------------|----------------|----------------|----------|---------------|------------------|-------------|----------------|-----|
| Constituent                     | Ba             | sult Units     | PQL      | MDL           | Method           | MB          | Lab            | DCN |
| Acetone                         |                | 1.7 ug/m3      | ·        | 0.038         | EPA-TO-15-SIM    | Bias<br>ND  | Quals<br>J,A01 | 1   |
| Benzene                         | 0              | .45 ug/m3      | 0.050    | 0.0032        | EPA-TO-15-SIM    | ND          |                | 2   |
| Benzyl chloride                 | 1              | ND ug/m3       | 0.50     | 0.0052        | EPA-TO-15-SIM    | ND          |                | 2   |
| Carbon tetrachloride            | 1              | ND ug/m3       | 0.20     | 0.0063        | EPA-TO-15-SIM    | ND          |                | 2   |
| Chlorobenzene                   | 1              | ND ug/m3       | 0.10     | 0.0079        | EPA-TO-15-SIM    | ND          |                | 2   |
| Chloroform                      | 0              | .27 ug/m3      | 0.050    | 0.0058        | EPA-TO-15-SIM    | ND          |                | 2   |
| 1,2-Dibromoethane               | 1              | ND ug/m3       | 0.20     | 0.014         | EPA-TO-15-SIM    | ND          |                | 2   |
| 1,2-Dichlorobenzene             | 1              | ND ug/m3       | 0.20     | 0.011         | EPA-TO-15-SIM    | ND          |                | 2   |
| 1,3-Dichlorobenzene             | 1              | ND ug/m3       | 0.20     | 0.013         | EPA-TO-15-SIM    | ND          |                | 2   |
| 1,4-Dichlorobenzene             | 1              | ND ug/m3       | 0.20     | 0.016         | EPA-TO-15-SIM    | ND          |                | 2   |
| Dichlorodifluoromethane         | :              | 2.2 ug/m3      | 0.050    | 0.0052        | EPA-TO-15-SIM    | ND          |                | 2   |
| 1,1-Dichloroethane              | 1              | ND ug/m3       | 0.050    | 0.0041        | EPA-TO-15-SIM    | ND          |                | 2   |
| 1,2-Dichloroethane              | 1              | ND ug/m3       | 0.10     | 0.0046        | EPA-TO-15-SIM    | ND          |                | 2   |
| I,1-Dichloroethene              | 1              | ND ug/m3       | 0.050    | 0.0078        | EPA-TO-15-SIM    | ND          |                | 2   |
| cis-1,2-Dichloroethene          | 1              | ND ug/m3       | 0.050    | 0.0044        | EPA-TO-15-SIM    | ND          |                | 2   |
| rans-1,2-Dichloroethene         | 1              | ND ug/m3       | 0.050    | 0.0075        | EPA-TO-15-SIM    | ND          |                | 2   |
| rans-1,3-Dichloropropene        | 1              | ND ug/m3       | 0.050    | 0.013         | EPA-TO-15-SIM    | ND          |                | 2   |
| I,1-Difluoroethane              | 0              | .54 ug/m3      | 5.0      | 0.0027        | EPA-TO-15-SIM    | ND          | J              | 2   |
| Ethylbenzene                    | 0              | .20 ug/m3      | 0.050    | 0.017         | EPA-TO-15-SIM    | ND          |                | 2   |
| Methylene chloride              | 1              | ND ug/m3       | 0.20     | 0.0077        | EPA-TO-15-SIM    | ND          |                | 2   |
| Tetrachloroethene               | 1              | ND ug/m3       | 0.10     | 0.011         | EPA-TO-15-SIM    | ND          |                | 2   |
| Foluene                         |                | l.7 ug/m3      | 0.50     | 0.031         | EPA-TO-15-SIM    | ND          | A01            | 1   |
| 1,1,1-Trichloroethane           | 1              | ND ug/m3       | 0.10     | 0.0055        | EPA-TO-15-SIM    | ND          |                | 2   |
| 1,1,2-Trichloroethane           | 1              | ND ug/m3       | 0.10     | 0.0055        | EPA-TO-15-SIM    | ND          |                | 2   |
| Trichloroethene                 | 1              | ND ug/m3       | 0.10     | 0.0095        | EPA-TO-15-SIM    | ND          |                | 2   |
| Trichlorofluoromethane          |                | l.4 ug/m3      | 0.050    | 0.0057        | EPA-TO-15-SIM    | ND          |                | 2   |
| 1,1,2-Trichloro-1,2,2-trifluoro | ethane 0       | .65 ug/m3      | 0.10     | 0.0078        | EPA-TO-15-SIM    | ND          |                | 2   |
| /inyl chloride                  | 1              | ND ug/m3       | 0.020    | 0.0046        | EPA-TO-15-SIM    | ND          |                | 2   |
| p- & m-Xylenes                  | 0              | .75 ug/m3      | 0.050    | 0.0082        | EPA-TO-15-SIM    | ND          |                | 2   |
| o-Xylene                        | 0              | .24 ug/m3      | 0.050    | 0.0044        | EPA-TO-15-SIM    | ND          |                | 2   |
| Total Xylenes                   | 0              | .99 ug/m3      | 0.10     | 0.013         | EPA-TO-15-SIM    | ND          |                | 2   |
| 4-Bromofluorobenzene (Surrog    | gate) 1        | 16 %           | 50 - 150 | (LCL - UCL)   | EPA-TO-15-SIM    |             |                | 1   |
| 4-Bromofluorobenzene (Surrog    | gate) 9        | 0.5 %          | 50 - 150 | (LCL - UCL)   | EPA-TO-15-SIM    |             |                | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

An result in this report aternormer of the exclusive use of the submitting party. Face Analytical assumes to responsionity for report aternorm, separation, determined and a separation, determined and a separation, determined and a separation of the exclusive use of the submitting party. Face Analytical assumes to responsionity for report aternorm, separation, determined and a separation of the exclusive use of the submitting party. Face Analytical assumes to responsionity for report aternorm, separation, determined and a separation of the exclusive use of the submitting party. Face Analytical assumes to responsionity for report aternorm, separation, determined and a separation of the exclusive use of the submitting party. Face Analytical assumes to responsionity for report aternorm, separation, determined and a separation of the exclusive use of the submitting party. Face Analytical assumes to responsionity for report aternorm, separation, determined and a separation of the exclusive use of the submitting party. Face Analytical assumes to responsionity for report aternorm, separation, determined and a separation of the exclusive use of the submitting party. Face Analytical assumes to responsion of the exclusive use of the submitting party. Face Analytical assumes to responsion of the exclusive use of the exclus



Reported:05/01/2023 14:46Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2307790-01    | Client San     | nple Name:     | AA-CL-202304 | 417, 4/18/2023 | 10:35:00AM, | Client   |           |
|---------------|---------------|----------------|----------------|--------------|----------------|-------------|----------|-----------|
|               |               | ·              | Run            |              |                |             | QC       |           |
| DCN           | Method        | Prep Date      | Date/Time      | Analyst      | Instrument     | Dilution    | Batch ID |           |
| 1             | EPA-TO-15-SIM | 04/24/23 13:09 | 04/24/23 22:45 | BEP          | MS-A1          | 5           | B164737  | EPA TO-15 |
| 2             | EPA-TO-15-SIM | 04/24/23 13:09 | 04/24/23 14:49 | BEP          | MS-A1          | 1           | B164737  | EPA TO-15 |



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307790-01 | Client Sampl | e Name: | AA-CL-20 | 230417, 4/ | 18/2023 10:35:00 | OAM, Client |              |     |
|----------------|------------|--------------|---------|----------|------------|------------------|-------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL        | Method           | MB<br>Bias  | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 33           | ppmv    | 2.0      | 1.8        | ASTM-D1946       | ND          |              | 1   |

|     |            |                | Run            |         |            |          | QC       |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/26/23 08:19 | 04/26/23 14:49 | RMK     | GC-A1      | 1        | B164949  | No Prep     |



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

#### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23077               | 790-02 Client Samp | e Name: | AA-BL-20     | 230417, 4/ | 18/2023 10:30:00 | AM, Client |              |     |
|------------------------------------|--------------------|---------|--------------|------------|------------------|------------|--------------|-----|
| Constituent                        | Result             | Units   | PQL          | MDL        | Method           | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                            | 5.4                | ug/m3   | 5.0          | 0.038      | EPA-TO-15-SIM    | ND         | A01          | 1   |
| Benzene                            | 0.50               | ug/m3   | 0.050        | 0.0032     | EPA-TO-15-SIM    | ND         |              | 2   |
| Benzyl chloride                    | ND                 | ug/m3   | 0.50         | 0.0052     | EPA-TO-15-SIM    | ND         |              | 2   |
| Carbon tetrachloride               | ND                 | ug/m3   | 0.20         | 0.0063     | EPA-TO-15-SIM    | ND         |              | 2   |
| Chlorobenzene                      | ND                 | ug/m3   | 0.10         | 0.0079     | EPA-TO-15-SIM    | ND         |              | 2   |
| Chloroform                         | ND                 | ug/m3   | 0.050        | 0.0058     | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,2-Dibromoethane                  | ND                 | ug/m3   | 0.20         | 0.014      | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,2-Dichlorobenzene                | ND                 | ug/m3   | 0.20         | 0.011      | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,3-Dichlorobenzene                | ND                 | ug/m3   | 0.20         | 0.013      | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,4-Dichlorobenzene                | ND                 | ug/m3   | 0.20         | 0.016      | EPA-TO-15-SIM    | ND         |              | 2   |
| Dichlorodifluoromethane            | 2.2                | ug/m3   | 0.050        | 0.0052     | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,1-Dichloroethane                 | ND                 | ug/m3   | 0.050        | 0.0041     | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,2-Dichloroethane                 | ND                 | ug/m3   | 0.10         | 0.0046     | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,1-Dichloroethene                 | ND                 | ug/m3   | 0.050        | 0.0078     | EPA-TO-15-SIM    | ND         |              | 2   |
| cis-1,2-Dichloroethene             | ND                 | ug/m3   | 0.050        | 0.0044     | EPA-TO-15-SIM    | ND         |              | 2   |
| trans-1,2-Dichloroethene           | ND                 | ug/m3   | 0.050        | 0.0075     | EPA-TO-15-SIM    | ND         |              | 2   |
| trans-1,3-Dichloropropene          | ND                 | ug/m3   | 0.050        | 0.013      | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,1-Difluoroethane                 | 0.37               | ug/m3   | 5.0          | 0.0027     | EPA-TO-15-SIM    | ND         | J            | 2   |
| Ethylbenzene                       | 0.32               | ug/m3   | 0.050        | 0.017      | EPA-TO-15-SIM    | ND         |              | 2   |
| Methylene chloride                 | ND                 | ug/m3   | 0.20         | 0.0077     | EPA-TO-15-SIM    | ND         |              | 2   |
| Tetrachloroethene                  | ND                 | ug/m3   | 0.10         | 0.011      | EPA-TO-15-SIM    | ND         |              | 2   |
| Toluene                            | 1.9                | ug/m3   | 0.50         | 0.031      | EPA-TO-15-SIM    | ND         | A01          | 1   |
| 1,1,1-Trichloroethane              | ND                 | ug/m3   | 0.10         | 0.0055     | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,1,2-Trichloroethane              | ND                 | ug/m3   | 0.10         | 0.0055     | EPA-TO-15-SIM    | ND         |              | 2   |
| Trichloroethene                    | ND                 | ug/m3   | 0.10         | 0.0095     | EPA-TO-15-SIM    | ND         |              | 2   |
| Trichlorofluoromethane             | 1.4                | ug/m3   | 0.050        | 0.0057     | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,1,2-Trichloro-1,2,2-trifluoroeth | ane 0.65           | ug/m3   | 0.10         | 0.0078     | EPA-TO-15-SIM    | ND         |              | 2   |
| Vinyl chloride                     | ND                 | ug/m3   | 0.020        | 0.0046     | EPA-TO-15-SIM    | ND         |              | 2   |
| p- & m-Xylenes                     | 1.1                | ug/m3   | 0.050        | 0.0082     | EPA-TO-15-SIM    | ND         |              | 2   |
| o-Xylene                           | 0.32               | ug/m3   | 0.050        | 0.0044     | EPA-TO-15-SIM    | ND         |              | 2   |
| Total Xylenes                      | 1.4                | ug/m3   | 0.10         | 0.013      | EPA-TO-15-SIM    | ND         |              | 2   |
| 4-Bromofluorobenzene (Surrogat     | te) 91.9           | %       | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM    |            |              | 1   |
| 4-Bromofluorobenzene (Surrogat     | te) 90.5           | %       | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM    |            |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

1001420395 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/01/2023 14:46Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2307790-02    | Client San     | ple Name:      | AA-BL-202304 | 417, 4/18/2023 | 10:30:00AM, | Client   |           |
|---------------|---------------|----------------|----------------|--------------|----------------|-------------|----------|-----------|
|               |               | -              | Run            |              |                |             | QC       |           |
| DCN           | Method        | Prep Date      | Date/Time      | Analyst      | Instrument     | Dilution    | Batch ID |           |
| 1             | EPA-TO-15-SIM | 04/24/23 13:09 | 04/24/23 23:23 | BEP          | MS-A1          | 5           | B164737  | EPA TO-15 |
| 2             | EPA-TO-15-SIM | 04/24/23 13:09 | 04/24/23 15:32 | BEP          | MS-A1          | 1           | B164737  | EPA TO-15 |



Reported: 05/01/2023 14:46 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307790-02 | Client Sampl | e Name: | AA-BL-20 | 230417, 4/ | 18/2023 10:30:00 |            |              |     |
|----------------|------------|--------------|---------|----------|------------|------------------|------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL        | Method           | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 1.9          | ppmv    | 2.0      | 1.8        | ASTM-D1946       | ND         | J            | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/26/23 08:19 | 04/26/23 15:09 | RMK     | GC-A1      | 1        | B164949  | No Prep     |



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23               | 07790-03 | Client Sampl | e Name: | AA-710/10    | AA-710/10-20230417, 4/18/2023 12:07:00PM, Client |               |            |              |     |  |
|---------------------------------|----------|--------------|---------|--------------|--------------------------------------------------|---------------|------------|--------------|-----|--|
| Constituent                     |          | Result       | Units   | PQL          | MDL                                              | Method        | MB<br>Bias | Lab<br>Quals | DCN |  |
| Acetone                         |          | 7.1          | ug/m3   | 5.0          | 0.038                                            | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| Benzene                         |          | 0.60         | ug/m3   | 0.050        | 0.0032                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Benzyl chloride                 |          | ND           | ug/m3   | 0.50         | 0.0052                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Carbon tetrachloride            |          | ND           | ug/m3   | 0.20         | 0.0063                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chlorobenzene                   |          | ND           | ug/m3   | 0.10         | 0.0079                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chloroform                      |          | ND           | ug/m3   | 0.050        | 0.0058                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dibromoethane               |          | ND           | ug/m3   | 0.20         | 0.014                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.011                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,3-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.013                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,4-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.016                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| Dichlorodifluoromethane         |          | 2.1          | ug/m3   | 0.050        | 0.0052                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1-Dichloroethane              |          | ND           | ug/m3   | 0.050        | 0.0041                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dichloroethane              |          | ND           | ug/m3   | 0.10         | 0.0046                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1-Dichloroethene              |          | ND           | ug/m3   | 0.050        | 0.0078                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| cis-1,2-Dichloroethene          |          | ND           | ug/m3   | 0.050        | 0.0044                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| trans-1,2-Dichloroethene        |          | ND           | ug/m3   | 0.050        | 0.0075                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| trans-1,3-Dichloropropene       |          | ND           | ug/m3   | 0.050        | 0.013                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1-Difluoroethane              |          | 0.56         | ug/m3   | 5.0          | 0.0027                                           | EPA-TO-15-SIM | ND         | J            | 2   |  |
| Ethylbenzene                    |          | 0.28         | ug/m3   | 0.050        | 0.017                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| Methylene chloride              |          | ND           | ug/m3   | 0.20         | 0.0077                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Tetrachloroethene               |          | ND           | ug/m3   | 0.10         | 0.011                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| Foluene                         |          | 1.9          | ug/m3   | 0.50         | 0.031                                            | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| 1,1,1-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1,2-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Trichloroethene                 |          | ND           | ug/m3   | 0.10         | 0.0095                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Trichlorofluoromethane          |          | 1.4          | ug/m3   | 0.050        | 0.0057                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1,2-Trichloro-1,2,2-trifluoro | ethane   | 0.65         | ug/m3   | 0.10         | 0.0078                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Vinyl chloride                  |          | ND           | ug/m3   | 0.020        | 0.0046                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| p- & m-Xylenes                  |          | 1.0          | ug/m3   | 0.050        | 0.0082                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| o-Xylene                        |          | 0.38         | ug/m3   | 0.050        | 0.0044                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Total Xylenes                   |          | 1.4          | ug/m3   | 0.10         | 0.013                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 4-Bromofluorobenzene (Surro     | gate)    | 87.2         | %       | 50 - 150 (LC | L - UCL)                                         | EPA-TO-15-SIM |            |              | 1   |  |
| 4-Bromofluorobenzene (Surro     | gate)    | 103          | %       | 50 - 150 (LC | L - UCL)                                         | EPA-TO-15-SIM |            |              | 2   |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/01/2023 14:46Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2307790-03    | 07790-03 Client Sample Name: |                |         | 230417, 4/18/20 | 23 12:07:00 | PM, Client |           |
|---------------|---------------|------------------------------|----------------|---------|-----------------|-------------|------------|-----------|
|               |               | -                            | Run            |         |                 |             | QC         |           |
| DCN           | Method        | Prep Date                    | Date/Time      | Analyst | Instrument      | Dilution    | Batch ID   |           |
| 1             | EPA-TO-15-SIM | 04/24/23 13:09               | 04/25/23 00:00 | BEP     | MS-A1           | 5           | B164737    | EPA TO-15 |
| 2             | EPA-TO-15-SIM | 04/24/23 13:09               | 04/24/23 16:17 | BEP     | MS-A1           | 1           | B164737    | EPA TO-15 |



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307790-03 | Client Sampl | e Name: | AA-710/10 | 0-2023041 | 7, 4/18/2023 12:0 | 7:00PM, Clie | ent          |     |
|----------------|------------|--------------|---------|-----------|-----------|-------------------|--------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL       | MDL       | Method            | MB<br>Bias   | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 5.3          | ppmv    | 2.0       | 1.8       | ASTM-D1946        | ND           |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/26/23 08:19 | 04/26/23 15:29 | RMK     | GC-A1      | 1        | B164949  | No Prep     |



Reported:05/01/2023 14:46Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23               | 07790-04 | Client Sampl | e Name: | AA-0.125     | MI-202304 | ent           |            |              |     |
|---------------------------------|----------|--------------|---------|--------------|-----------|---------------|------------|--------------|-----|
| Constituent                     |          | Result       | Units   | PQL          | MDL       | Method        | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                         |          | 5.3          | ug/m3   | 5.0          | 0.038     | EPA-TO-15-SIM | ND         | A01          | 1   |
| Benzene                         |          | 0.62         | ug/m3   | 0.050        | 0.0032    | EPA-TO-15-SIM | ND         |              | 2   |
| Benzyl chloride                 |          | ND           | ug/m3   | 0.50         | 0.0052    | EPA-TO-15-SIM | ND         |              | 2   |
| Carbon tetrachloride            |          | ND           | ug/m3   | 0.20         | 0.0063    | EPA-TO-15-SIM | ND         |              | 2   |
| Chlorobenzene                   |          | ND           | ug/m3   | 0.10         | 0.0079    | EPA-TO-15-SIM | ND         |              | 2   |
| Chloroform                      |          | 0.31         | ug/m3   | 0.050        | 0.0058    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dibromoethane               |          | ND           | ug/m3   | 0.20         | 0.014     | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.011     | EPA-TO-15-SIM | ND         |              | 2   |
| 1,3-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.013     | EPA-TO-15-SIM | ND         |              | 2   |
| 1,4-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.016     | EPA-TO-15-SIM | ND         |              | 2   |
| Dichlorodifluoromethane         |          | 2.0          | ug/m3   | 0.050        | 0.0052    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Dichloroethane              |          | ND           | ug/m3   | 0.050        | 0.0041    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dichloroethane              |          | ND           | ug/m3   | 0.10         | 0.0046    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Dichloroethene              |          | ND           | ug/m3   | 0.050        | 0.0078    | EPA-TO-15-SIM | ND         |              | 2   |
| cis-1,2-Dichloroethene          |          | ND           | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM | ND         |              | 2   |
| rans-1,2-Dichloroethene         |          | ND           | ug/m3   | 0.050        | 0.0075    | EPA-TO-15-SIM | ND         |              | 2   |
| rans-1,3-Dichloropropene        |          | ND           | ug/m3   | 0.050        | 0.013     | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Difluoroethane              |          | 1.3          | ug/m3   | 5.0          | 0.0027    | EPA-TO-15-SIM | ND         | J            | 2   |
| Ethylbenzene                    |          | 0.25         | ug/m3   | 0.050        | 0.017     | EPA-TO-15-SIM | ND         |              | 2   |
| Methylene chloride              |          | ND           | ug/m3   | 0.20         | 0.0077    | EPA-TO-15-SIM | ND         |              | 2   |
| Fetrachloroethene               |          | ND           | ug/m3   | 0.10         | 0.011     | EPA-TO-15-SIM | ND         |              | 2   |
| Foluene                         |          | 1.8          | ug/m3   | 0.50         | 0.031     | EPA-TO-15-SIM | ND         | A01          | 1   |
| 1,1,1-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1,2-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM | ND         |              | 2   |
| Trichloroethene                 |          | ND           | ug/m3   | 0.10         | 0.0095    | EPA-TO-15-SIM | ND         |              | 2   |
| Trichlorofluoromethane          |          | 1.4          | ug/m3   | 0.050        | 0.0057    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1,2-Trichloro-1,2,2-trifluoro | ethane   | 0.65         | ug/m3   | 0.10         | 0.0078    | EPA-TO-15-SIM | ND         |              | 2   |
| /inyl chloride                  |          | ND           | ug/m3   | 0.020        | 0.0046    | EPA-TO-15-SIM | ND         |              | 2   |
| o- & m-Xylenes                  |          | 0.92         | ug/m3   | 0.050        | 0.0082    | EPA-TO-15-SIM | ND         |              | 2   |
| o-Xylene                        |          | 0.32         | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM | ND         |              | 2   |
| Fotal Xylenes                   |          | 1.2          | ug/m3   | 0.10         | 0.013     | EPA-TO-15-SIM | ND         |              | 2   |
| A-Bromofluorobenzene (Surro     | ogate)   | 92.2         | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM |            |              | 1   |
| 4-Bromofluorobenzene (Surro     | gate)    | 97.5         | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM |            |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report tappy to the samples analyzed in accordance with the characteristic assumes no responsibility for report atterior has be reported at the analyzed report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11420305 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001420395



Reported:05/01/2023 14:46Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample II | Sample ID: 2307790-04 Client Sample Name: A |                |                | AA-0.125MI-20230417, 4/18/2023 11:47:00AM, Client |            |          |          |           |  |
|---------------|---------------------------------------------|----------------|----------------|---------------------------------------------------|------------|----------|----------|-----------|--|
|               |                                             | -              | Run            |                                                   |            |          | QC       |           |  |
| DCN           | Method                                      | Prep Date      | Date/Time      | Analyst                                           | Instrument | Dilution | Batch ID |           |  |
| 1             | EPA-TO-15-SIM                               | 04/24/23 13:09 | 04/25/23 00:38 | BEP                                               | MS-A1      | 5        | B164737  | EPA TO-15 |  |
| 2             | EPA-TO-15-SIM                               | 04/24/23 13:09 | 04/24/23 17:03 | BEP                                               | MS-A1      | 1        | B164737  | EPA TO-15 |  |



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307790-04 | Client Sampl | e Name: | AA-0.125I | MI-202304 | 17, 4/18/2023 11 | :47:00AM, Cli | ent          |     |
|----------------|------------|--------------|---------|-----------|-----------|------------------|---------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL       | MDL       | Method           | MB<br>Bias    | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 7.6          | ppmv    | 2.0       | 1.8       | ASTM-D1946       | ND            |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/26/23 08:19 | 04/26/23 15:49 | RMK     | GC-A1      | 1        | B164949  | No Prep     |



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23077               | 90-05 Client Sampl | e Name: | AA-0.25N     | AA-0.25MI-20230417, 4/18/2023 10:45:00AM, Client |               |            |              |     |  |
|------------------------------------|--------------------|---------|--------------|--------------------------------------------------|---------------|------------|--------------|-----|--|
| Constituent                        | Result             | Units   | PQL          | MDL                                              | Method        | MB<br>Bias | Lab<br>Quals | DCN |  |
| Acetone                            | 11                 | ug/m3   | 5.0          | 0.038                                            | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| Benzene                            | 0.50               | ug/m3   | 0.050        | 0.0032                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Benzyl chloride                    | ND                 | ug/m3   | 0.50         | 0.0052                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Carbon tetrachloride               | ND                 | ug/m3   | 0.20         | 0.0063                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chlorobenzene                      | ND                 | ug/m3   | 0.10         | 0.0079                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chloroform                         | ND                 | ug/m3   | 0.050        | 0.0058                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dibromoethane                  | ND                 | ug/m3   | 0.20         | 0.014                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dichlorobenzene                | ND                 | ug/m3   | 0.20         | 0.011                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,3-Dichlorobenzene                | ND                 | ug/m3   | 0.20         | 0.013                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,4-Dichlorobenzene                | ND                 | ug/m3   | 0.20         | 0.016                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| Dichlorodifluoromethane            | 2.3                | ug/m3   | 0.050        | 0.0052                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1-Dichloroethane                 | ND                 | ug/m3   | 0.050        | 0.0041                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dichloroethane                 | ND                 | ug/m3   | 0.10         | 0.0046                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| I,1-Dichloroethene                 | ND                 | ug/m3   | 0.050        | 0.0078                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| cis-1,2-Dichloroethene             | ND                 | ug/m3   | 0.050        | 0.0044                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| rans-1,2-Dichloroethene            | ND                 | ug/m3   | 0.050        | 0.0075                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| trans-1,3-Dichloropropene          | ND                 | ug/m3   | 0.050        | 0.013                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1-Difluoroethane                 | 0.48               | ug/m3   | 5.0          | 0.0027                                           | EPA-TO-15-SIM | ND         | J            | 2   |  |
| Ethylbenzene                       | 0.26               | ug/m3   | 0.050        | 0.017                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| Methylene chloride                 | ND                 | ug/m3   | 0.20         | 0.0077                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Tetrachloroethene                  | ND                 | ug/m3   | 0.10         | 0.011                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| Foluene                            | 1.8                | ug/m3   | 0.50         | 0.031                                            | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| 1,1,1-Trichloroethane              | ND                 | ug/m3   | 0.10         | 0.0055                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1,2-Trichloroethane              | ND                 | ug/m3   | 0.10         | 0.0055                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Trichloroethene                    | ND                 | ug/m3   | 0.10         | 0.0095                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Trichlorofluoromethane             | 1.4                | ug/m3   | 0.050        | 0.0057                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1,2-Trichloro-1,2,2-trifluoroeth | ane 0.66           | ug/m3   | 0.10         | 0.0078                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| /inyl chloride                     | ND                 | ug/m3   | 0.020        | 0.0046                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| p- & m-Xylenes                     | 0.92               | ug/m3   | 0.050        | 0.0082                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| o-Xylene                           | 0.32               | ug/m3   | 0.050        | 0.0044                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Fotal Xylenes                      | 1.2                | ug/m3   | 0.10         | 0.013                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 4-Bromofluorobenzene (Surrogate    | e) 91.3            | %       | 50 - 150 (LC | L - UCL)                                         | EPA-TO-15-SIM |            |              | 1   |  |
| 4-Bromofluorobenzene (Surrogate    | e) 98.9            | %       | 50 - 150 (LC | L - UCL)                                         | EPA-TO-15-SIM |            |              | 2   |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report tappy to the samples analyzed in accordance with the characteristic assumes no responsibility for report atterior has be reported at the analyzed report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11420305 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001420395



Reported:05/01/2023 14:46Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample I | <b>D:</b> 2307790-05 | Client San     | nple Name:     | AA-0.25MI-20230417, 4/18/2023 10:45:00AM, Client |            |          |          |           |  |
|--------------|----------------------|----------------|----------------|--------------------------------------------------|------------|----------|----------|-----------|--|
|              |                      | ·              | Run            |                                                  |            |          | QC       |           |  |
| DCN          | Method               | Prep Date      | Date/Time      | Analyst                                          | Instrument | Dilution | Batch ID |           |  |
| 1            | EPA-TO-15-SIM        | 04/24/23 13:09 | 04/25/23 01:15 | BEP                                              | MS-A1      | 5        | B164737  | EPA TO-15 |  |
| 2            | EPA-TO-15-SIM        | 04/24/23 13:09 | 04/24/23 17:47 | BEP                                              | MS-A1      | 1        | B164737  | EPA TO-15 |  |



Reported: 05/01/2023 14:46 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307790-05 | Client Sampl | e Name: | AA-0.25M | II-2023041 | 7, 4/18/2023 10:4 | 5:00AM, Clie | nt           |     |
|----------------|------------|--------------|---------|----------|------------|-------------------|--------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL        | Method            | MB<br>Bias   | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 80           | ppmv    | 2.0      | 1.8        | ASTM-D1946        | ND           |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/26/23 08:19 | 04/26/23 16:09 | RMK     | GC-A1      | 1        | B164949  | No Prep     |



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307790                | -06 Client Sample | e Name: | AA-0.5MI     | -20230417 | t             |            |              |     |
|---------------------------------------|-------------------|---------|--------------|-----------|---------------|------------|--------------|-----|
| Constituent                           | Result            | Units   | PQL          | MDL       | Method        | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                               | 5.2               | ug/m3   | 5.0          | 0.038     | EPA-TO-15-SIM | ND         | A01          | 1   |
| Benzene                               | 0.54              | ug/m3   | 0.050        | 0.0032    | EPA-TO-15-SIM | ND         |              | 2   |
| Benzyl chloride                       | ND                | ug/m3   | 0.50         | 0.0052    | EPA-TO-15-SIM | ND         |              | 2   |
| Carbon tetrachloride                  | ND                | ug/m3   | 0.20         | 0.0063    | EPA-TO-15-SIM | ND         |              | 2   |
| Chlorobenzene                         | ND                | ug/m3   | 0.10         | 0.0079    | EPA-TO-15-SIM | ND         |              | 2   |
| Chloroform                            | ND                | ug/m3   | 0.050        | 0.0058    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dibromoethane                     | ND                | ug/m3   | 0.20         | 0.014     | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dichlorobenzene                   | ND                | ug/m3   | 0.20         | 0.011     | EPA-TO-15-SIM | ND         |              | 2   |
| 1,3-Dichlorobenzene                   | ND                | ug/m3   | 0.20         | 0.013     | EPA-TO-15-SIM | ND         |              | 2   |
| 1,4-Dichlorobenzene                   | ND                | ug/m3   | 0.20         | 0.016     | EPA-TO-15-SIM | ND         |              | 2   |
| Dichlorodifluoromethane               | 2.2               | ug/m3   | 0.050        | 0.0052    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Dichloroethane                    | ND                | ug/m3   | 0.050        | 0.0041    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dichloroethane                    | ND                | ug/m3   | 0.10         | 0.0046    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Dichloroethene                    | ND                | ug/m3   | 0.050        | 0.0078    | EPA-TO-15-SIM | ND         |              | 2   |
| cis-1,2-Dichloroethene                | ND                | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM | ND         |              | 2   |
| trans-1,2-Dichloroethene              | ND                | ug/m3   | 0.050        | 0.0075    | EPA-TO-15-SIM | ND         |              | 2   |
| rans-1,3-Dichloropropene              | ND                | ug/m3   | 0.050        | 0.013     | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Difluoroethane                    | 0.44              | ug/m3   | 5.0          | 0.0027    | EPA-TO-15-SIM | ND         | J            | 2   |
| Ethylbenzene                          | 0.23              | ug/m3   | 0.050        | 0.017     | EPA-TO-15-SIM | ND         |              | 2   |
| Methylene chloride                    | ND                | ug/m3   | 0.20         | 0.0077    | EPA-TO-15-SIM | ND         |              | 2   |
| Tetrachloroethene                     | ND                | ug/m3   | 0.10         | 0.011     | EPA-TO-15-SIM | ND         |              | 2   |
| Toluene                               | 1.9               | ug/m3   | 0.50         | 0.031     | EPA-TO-15-SIM | ND         | A01          | 1   |
| 1,1,1-Trichloroethane                 | ND                | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1,2-Trichloroethane                 | ND                | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM | ND         |              | 2   |
| Trichloroethene                       | ND                | ug/m3   | 0.10         | 0.0095    | EPA-TO-15-SIM | ND         |              | 2   |
| Trichlorofluoromethane                | 1.4               | ug/m3   | 0.050        | 0.0057    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | e 0.65            | ug/m3   | 0.10         | 0.0078    | EPA-TO-15-SIM | ND         |              | 2   |
| Vinyl chloride                        | ND                | ug/m3   | 0.020        | 0.0046    | EPA-TO-15-SIM | ND         |              | 2   |
| o- & m-Xylenes                        | 0.87              | ug/m3   | 0.050        | 0.0082    | EPA-TO-15-SIM | ND         |              | 2   |
| o-Xylene                              | 0.28              | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM | ND         |              | 2   |
| Fotal Xylenes                         | 1.1               | ug/m3   | 0.10         | 0.013     | EPA-TO-15-SIM | ND         |              | 2   |
| 4-Bromofluorobenzene (Surrogate)      | 86.9              | %       | 50 - 150 (LC | CL - UCL) | EPA-TO-15-SIM |            |              | 1   |
| 4-Bromofluorobenzene (Surrogate)      | 95.5              | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM |            |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1001420395 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2307790-06    | nple Name:     | AA-0.5MI-202   | 30417, 4/18/202 | 3 11:52:00A | M, Client |          |           |
|---------------|---------------|----------------|----------------|-----------------|-------------|-----------|----------|-----------|
|               |               | -              | Run            |                 |             |           | QC       |           |
| DCN           | Method        | Prep Date      | Date/Time      | Analyst         | Instrument  | Dilution  | Batch ID |           |
| 1             | EPA-TO-15-SIM | 04/24/23 13:09 | 04/25/23 01:53 | BEP             | MS-A1       | 5         | B164737  | EPA TO-15 |
| 2             | EPA-TO-15-SIM | 04/24/23 13:09 | 04/24/23 18:30 | BEP             | MS-A1       | 1         | B164737  | EPA TO-15 |



Reported: 05/01/2023 14:46 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307790-06 | Client Sampl | e Name: | AA-0.5MI- | 20230417 | , 4/18/2023 11:52 | 2:00AM, Clien | t            |     |
|----------------|------------|--------------|---------|-----------|----------|-------------------|---------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL       | MDL      | Method            | MB<br>Bias    | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 1.9          | ppmv    | 2.0       | 1.8      | ASTM-D1946        | ND            | J            | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/26/23 08:19 | 04/26/23 16:29 | RMK     | GC-A1      | 1        | B164949  | No Prep     |



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23077               | 790-07 Client Samp | e Name: | AA-0.75N     | AA-0.75MI-20230417, 4/18/2023 10:15:00AM, Client |               |            |              |     |  |
|------------------------------------|--------------------|---------|--------------|--------------------------------------------------|---------------|------------|--------------|-----|--|
| Constituent                        | Result             | Units   | PQL          | MDL                                              | Method        | MB<br>Bias | Lab<br>Quals | DCN |  |
| Acetone                            | 8.2                | ug/m3   | 5.0          | 0.038                                            | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| Benzene                            | 0.55               | ug/m3   | 0.050        | 0.0032                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Benzyl chloride                    | ND                 | ug/m3   | 0.50         | 0.0052                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Carbon tetrachloride               | ND                 | ug/m3   | 0.20         | 0.0063                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chlorobenzene                      | ND                 | ug/m3   | 0.10         | 0.0079                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chloroform                         | ND                 | ug/m3   | 0.050        | 0.0058                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dibromoethane                  | ND                 | ug/m3   | 0.20         | 0.014                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dichlorobenzene                | ND                 | ug/m3   | 0.20         | 0.011                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,3-Dichlorobenzene                | ND                 | ug/m3   | 0.20         | 0.013                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,4-Dichlorobenzene                | ND                 | ug/m3   | 0.20         | 0.016                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| Dichlorodifluoromethane            | 2.3                | ug/m3   | 0.050        | 0.0052                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1-Dichloroethane                 | ND                 | ug/m3   | 0.050        | 0.0041                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dichloroethane                 | ND                 | ug/m3   | 0.10         | 0.0046                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1-Dichloroethene                 | ND                 | ug/m3   | 0.050        | 0.0078                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| cis-1,2-Dichloroethene             | ND                 | ug/m3   | 0.050        | 0.0044                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| trans-1,2-Dichloroethene           | ND                 | ug/m3   | 0.050        | 0.0075                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| trans-1,3-Dichloropropene          | ND                 | ug/m3   | 0.050        | 0.013                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1-Difluoroethane                 | 1.3                | ug/m3   | 5.0          | 0.0027                                           | EPA-TO-15-SIM | ND         | J            | 2   |  |
| Ethylbenzene                       | 0.29               | ug/m3   | 0.050        | 0.017                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| Methylene chloride                 | ND                 | ug/m3   | 0.20         | 0.0077                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Tetrachloroethene                  | ND                 | ug/m3   | 0.10         | 0.011                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| Toluene                            | 2.2                | ug/m3   | 0.50         | 0.031                                            | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| 1,1,1-Trichloroethane              | ND                 | ug/m3   | 0.10         | 0.0055                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1,2-Trichloroethane              | ND                 | ug/m3   | 0.10         | 0.0055                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Trichloroethene                    | ND                 | ug/m3   | 0.10         | 0.0095                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Trichlorofluoromethane             | 1.4                | ug/m3   | 0.050        | 0.0057                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1,2-Trichloro-1,2,2-trifluoroeth | ane 0.66           | ug/m3   | 0.10         | 0.0078                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Vinyl chloride                     | ND                 | ug/m3   | 0.020        | 0.0046                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| p- & m-Xylenes                     | 1.1                | ug/m3   | 0.050        | 0.0082                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| o-Xylene                           | 0.36               | ug/m3   | 0.050        | 0.0044                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Total Xylenes                      | 1.5                | ug/m3   | 0.10         | 0.013                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 4-Bromofluorobenzene (Surrogat     | e) 90.8            | %       | 50 - 150 (LC | L - UCL)                                         | EPA-TO-15-SIM |            |              | 1   |  |
| 4-Bromofluorobenzene (Surrogat     | e) 102             | %       | 50 - 150 (LC | L - UCL)                                         | EPA-TO-15-SIM |            |              | 2   |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report tappy to the samples analyzed in accordance with the characteristic assumes no responsibility for report atterior has be reported at the analyzed report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11420305 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001420395



Reported: 05/01/2023 14:46 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2307790-07    | Client Sam     | ple Name:      | AA-0.75MI-20230417, 4/18/2023 10:15:00AM, Client |            |          |          |           |  |
|---------------|---------------|----------------|----------------|--------------------------------------------------|------------|----------|----------|-----------|--|
|               |               |                | Run            |                                                  |            |          | QC       |           |  |
| DCN           | Method        | Prep Date      | Date/Time      | Analyst                                          | Instrument | Dilution | Batch ID |           |  |
| 1             | EPA-TO-15-SIM | 04/24/23 13:09 | 04/25/23 02:30 | BEP                                              | MS-A1      | 5        | B164737  | EPA TO-15 |  |
| 2             | EPA-TO-15-SIM | 04/24/23 13:09 | 04/24/23 19:14 | BEP                                              | MS-A1      | 1        | B164737  | EPA TO-15 |  |

DCN = Data Continuation Number

Page 26 of 43



Reported: 05/01/2023 14:46 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307790-07 | Client Sampl | e Name: | AA-0.75M | II-2023041 | 7, 4/18/2023 10:1 | nt         |              |     |
|----------------|------------|--------------|---------|----------|------------|-------------------|------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL        | Method            | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 5.6          | ppmv    | 2.0      | 1.8        | ASTM-D1946        | ND         |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/26/23 08:19 | 04/26/23 16:49 | RMK     | GC-A1      | 1        | B164949  | No Prep     |



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23              | 07790-08 | Client Sampl | e Name: | AA-PW2-2     | AA-PW2-20230417, 4/18/2023 10:29:00AM, Client |               |            |              |     |  |
|--------------------------------|----------|--------------|---------|--------------|-----------------------------------------------|---------------|------------|--------------|-----|--|
| Constituent                    |          | Result       | Units   | PQL          | MDL                                           | Method        | MB<br>Bias | Lab<br>Quals | DCN |  |
| Acetone                        |          | 7.4          | ug/m3   | 5.0          | 0.038                                         | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| Benzene                        |          | 0.85         | ug/m3   | 0.050        | 0.0032                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| Benzyl chloride                |          | ND           | ug/m3   | 0.50         | 0.0052                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| Carbon tetrachloride           |          | ND           | ug/m3   | 0.20         | 0.0063                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chlorobenzene                  |          | ND           | ug/m3   | 0.10         | 0.0079                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chloroform                     |          | ND           | ug/m3   | 0.050        | 0.0058                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dibromoethane              |          | ND           | ug/m3   | 0.20         | 0.014                                         | EPA-TO-15-SIM | ND         |              | 2   |  |
| ,2-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.011                                         | EPA-TO-15-SIM | ND         |              | 2   |  |
| ,3-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.013                                         | EPA-TO-15-SIM | ND         |              | 2   |  |
| ,4-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.016                                         | EPA-TO-15-SIM | ND         |              | 2   |  |
| Dichlorodifluoromethane        |          | 2.2          | ug/m3   | 0.050        | 0.0052                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| ,1-Dichloroethane              |          | ND           | ug/m3   | 0.050        | 0.0041                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| ,2-Dichloroethane              |          | ND           | ug/m3   | 0.10         | 0.0046                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| ,1-Dichloroethene              |          | ND           | ug/m3   | 0.050        | 0.0078                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| is-1,2-Dichloroethene          |          | ND           | ug/m3   | 0.050        | 0.0044                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| rans-1,2-Dichloroethene        |          | ND           | ug/m3   | 0.050        | 0.0075                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| rans-1,3-Dichloropropene       |          | ND           | ug/m3   | 0.050        | 0.013                                         | EPA-TO-15-SIM | ND         |              | 2   |  |
| ,1-Difluoroethane              |          | 1.4          | ug/m3   | 25           | 0.014                                         | EPA-TO-15-SIM | ND         | J,A01        | 1   |  |
| Ethylbenzene                   |          | 0.43         | ug/m3   | 0.050        | 0.017                                         | EPA-TO-15-SIM | ND         |              | 2   |  |
| Nethylene chloride             |          | ND           | ug/m3   | 0.20         | 0.0077                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| etrachloroethene               |          | ND           | ug/m3   | 0.10         | 0.011                                         | EPA-TO-15-SIM | ND         |              | 2   |  |
| oluene                         |          | 2.6          | ug/m3   | 0.50         | 0.031                                         | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| ,1,1-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| ,1,2-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| richloroethene                 |          | ND           | ug/m3   | 0.10         | 0.0095                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| richlorofluoromethane          |          | 1.4          | ug/m3   | 0.050        | 0.0057                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| ,1,2-Trichloro-1,2,2-trifluoro | ethane   | 0.64         | ug/m3   | 0.10         | 0.0078                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| /inyl chloride                 |          | ND           | ug/m3   | 0.020        | 0.0046                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| - & m-Xylenes                  |          | 1.6          | ug/m3   | 0.050        | 0.0082                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| -Xylene                        |          | 0.56         | ug/m3   | 0.050        | 0.0044                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| otal Xylenes                   |          | 2.1          | ug/m3   | 0.10         | 0.013                                         | EPA-TO-15-SIM | ND         |              | 2   |  |
| -Bromofluorobenzene (Surro     | gate)    | 95.3         | %       | 50 - 150 (LC | L - UCL)                                      | EPA-TO-15-SIM |            |              | 1   |  |
| I-Bromofluorobenzene (Surro    | gate)    | 104          | %       | 50 - 150 (LC | L - UCL)                                      | EPA-TO-15-SIM |            |              | 2   |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report are for the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the exclusive use of the submitting particular spectra of the exclusive use of the submitting particular spectra of the exclusive use of the exclu

Report ID: 1001420395



Reported: 05/01/2023 14:46 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample I | <b>D:</b> 2307790-08 | Client San     | nple Name:     | AA-PW2-2023 | 30417, 4/18/2023 | M, Client |          |           |
|--------------|----------------------|----------------|----------------|-------------|------------------|-----------|----------|-----------|
|              |                      |                | Run            |             |                  |           | QC       |           |
| DCN          | Method               | Prep Date      | Date/Time      | Analyst     | Instrument       | Dilution  | Batch ID |           |
| 1            | EPA-TO-15-SIM        | 04/24/23 13:09 | 04/25/23 03:07 | BEP         | MS-A1            | 5         | B164737  | EPA TO-15 |
| 2            | EPA-TO-15-SIM        | 04/24/23 13:09 | 04/24/23 19:58 | BEP         | MS-A1            | 1         | B164737  | EPA TO-15 |



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307790-08 | Client Sampl | e Name: | AA-PW2-2 | 20230417, | 4/18/2023 10:29 | 00AM, Client |              |     |
|----------------|------------|--------------|---------|----------|-----------|-----------------|--------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL       | Method          | MB<br>Bias   | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 22           | ppmv    | 2.0      | 1.8       | ASTM-D1946      | ND           |              | 1   |

|     |            |                | Run            |         |            |          | QC       |             |  |  |  |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|--|--|--|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |  |  |  |
| 1   | ASTM-D1946 | 04/26/23 08:19 | 04/26/23 17:50 | RMK     | GC-A1      | 1        | B164949  | No Prep     |  |  |  |



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307790-0              | 9 Client Sample | Name: | AA-PW3-2     | 20230417, | 4/18/2023 10:37:0 | 00AM, Client | AM, Client   |     |  |
|---------------------------------------|-----------------|-------|--------------|-----------|-------------------|--------------|--------------|-----|--|
| Constituent                           | Result          | Units | PQL          | MDL       | Method            | MB<br>Bias   | Lab<br>Quals | DCN |  |
| Acetone                               | 5.3             | ug/m3 | 5.0          | 0.038     | EPA-TO-15-SIM     | ND           | A01          | 1   |  |
| Benzene                               | 0.64            | ug/m3 | 0.050        | 0.0032    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| Benzyl chloride                       | ND              | ug/m3 | 0.50         | 0.0052    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| Carbon tetrachloride                  | ND              | ug/m3 | 0.20         | 0.0063    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| Chlorobenzene                         | ND              | ug/m3 | 0.10         | 0.0079    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| Chloroform                            | ND              | ug/m3 | 0.050        | 0.0058    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| 1,2-Dibromoethane                     | ND              | ug/m3 | 0.20         | 0.014     | EPA-TO-15-SIM     | ND           |              | 2   |  |
| 1,2-Dichlorobenzene                   | ND              | ug/m3 | 0.20         | 0.011     | EPA-TO-15-SIM     | ND           |              | 2   |  |
| 1,3-Dichlorobenzene                   | ND              | ug/m3 | 0.20         | 0.013     | EPA-TO-15-SIM     | ND           |              | 2   |  |
| 1,4-Dichlorobenzene                   | ND              | ug/m3 | 0.20         | 0.016     | EPA-TO-15-SIM     | ND           |              | 2   |  |
| Dichlorodifluoromethane               | 2.2             | ug/m3 | 0.050        | 0.0052    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| I,1-Dichloroethane                    | ND              | ug/m3 | 0.050        | 0.0041    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| 1,2-Dichloroethane                    | ND              | ug/m3 | 0.10         | 0.0046    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| I,1-Dichloroethene                    | ND              | ug/m3 | 0.050        | 0.0078    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| cis-1,2-Dichloroethene                | ND              | ug/m3 | 0.050        | 0.0044    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| rans-1,2-Dichloroethene               | ND              | ug/m3 | 0.050        | 0.0075    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| rans-1,3-Dichloropropene              | ND              | ug/m3 | 0.050        | 0.013     | EPA-TO-15-SIM     | ND           |              | 2   |  |
| 1,1-Difluoroethane                    | 0.61            | ug/m3 | 5.0          | 0.0027    | EPA-TO-15-SIM     | ND           | J            | 2   |  |
| Ethylbenzene                          | 0.33            | ug/m3 | 0.050        | 0.017     | EPA-TO-15-SIM     | ND           |              | 2   |  |
| Methylene chloride                    | ND              | ug/m3 | 0.20         | 0.0077    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| Tetrachloroethene                     | ND              | ug/m3 | 0.10         | 0.011     | EPA-TO-15-SIM     | ND           |              | 2   |  |
| Foluene                               | 2.1             | ug/m3 | 0.50         | 0.031     | EPA-TO-15-SIM     | ND           | A01          | 1   |  |
| 1,1,1-Trichloroethane                 | ND              | ug/m3 | 0.10         | 0.0055    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| 1,1,2-Trichloroethane                 | ND              | ug/m3 | 0.10         | 0.0055    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| Trichloroethene                       | ND              | ug/m3 | 0.10         | 0.0095    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| Frichlorofluoromethane                | 1.4             | ug/m3 | 0.050        | 0.0057    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| I,1,2-Trichloro-1,2,2-trifluoroethane | 0.66            | ug/m3 | 0.10         | 0.0078    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| /inyl chloride                        | ND              | ug/m3 | 0.020        | 0.0046    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| o- & m-Xylenes                        | 1.2             | ug/m3 | 0.050        | 0.0082    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| o-Xylene                              | 0.37            | ug/m3 | 0.050        | 0.0044    | EPA-TO-15-SIM     | ND           |              | 2   |  |
| Fotal Xylenes                         | 1.6             | ug/m3 | 0.10         | 0.013     | EPA-TO-15-SIM     | ND           |              | 2   |  |
| 4-Bromofluorobenzene (Surrogate)      | 86.9            | %     | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM     |              |              | 1   |  |
| 4-Bromofluorobenzene (Surrogate)      | 91.1            | %     | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM     |              |              | 2   |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1001420395 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 05/01/2023 14:46 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample II | <b>D:</b> 2307790-09 | Client San     | nple Name:     | AA-PW3-2023 | 30417, 4/18/2023 | 3 10:37:00AI | M, Client |           |
|---------------|----------------------|----------------|----------------|-------------|------------------|--------------|-----------|-----------|
|               |                      | -              | Run            |             |                  |              | QC        |           |
| DCN           | Method               | Prep Date      | Date/Time      | Analyst     | Instrument       | Dilution     | Batch ID  |           |
| 1             | EPA-TO-15-SIM        | 04/24/23 13:09 | 04/25/23 03:45 | BEP         | MS-A1            | 5            | B164737   | EPA TO-15 |
| 2             | EPA-TO-15-SIM        | 04/24/23 13:09 | 04/24/23 20:43 | BEP         | MS-A1            | 1            | B164737   | EPA TO-15 |



Reported: 05/01/2023 14:46 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307790-09 | Client Sampl | e Name: | AA-PW3-2 | 20230417, | 4/18/2023 10:37 | 00AM, Client |              |     |
|----------------|------------|--------------|---------|----------|-----------|-----------------|--------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL       | Method          | MB<br>Bias   | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 40           | ppmv    | 2.0      | 1.8       | ASTM-D1946      | ND           |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/26/23 08:19 | 04/26/23 18:10 | RMK     | GC-A1      | 1        | B164949  | No Prep     |



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

#### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307790-7             | 10 Client Sample | Client Sample Name: |              |          | AA-0.125MI-20230417-D, 4/18/2023 11:47:00AM, Client |            |              |     |  |  |
|--------------------------------------|------------------|---------------------|--------------|----------|-----------------------------------------------------|------------|--------------|-----|--|--|
| Constituent                          | Result           | Units               | PQL          | MDL      | Method                                              | MB<br>Bias | Lab<br>Quals | DCN |  |  |
| Acetone                              | 4.9              | ug/m3               | 5.0          | 0.038    | EPA-TO-15-SIM                                       | ND         | J,A01        | 1   |  |  |
| Benzene                              | 0.56             | ug/m3               | 0.050        | 0.0032   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| Benzyl chloride                      | ND               | ug/m3               | 0.50         | 0.0052   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| Carbon tetrachloride                 | ND               | ug/m3               | 0.20         | 0.0063   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| Chlorobenzene                        | ND               | ug/m3               | 0.10         | 0.0079   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| Chloroform                           | ND               | ug/m3               | 0.050        | 0.0058   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| 1,2-Dibromoethane                    | ND               | ug/m3               | 0.20         | 0.014    | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| 1,2-Dichlorobenzene                  | ND               | ug/m3               | 0.20         | 0.011    | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| I,3-Dichlorobenzene                  | ND               | ug/m3               | 0.20         | 0.013    | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| 1,4-Dichlorobenzene                  | ND               | ug/m3               | 0.20         | 0.016    | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| Dichlorodifluoromethane              | 2.4              | ug/m3               | 0.050        | 0.0052   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| 1,1-Dichloroethane                   | ND               | ug/m3               | 0.050        | 0.0041   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| ,2-Dichloroethane                    | ND               | ug/m3               | 0.10         | 0.0046   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| I,1-Dichloroethene                   | ND               | ug/m3               | 0.050        | 0.0078   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| cis-1,2-Dichloroethene               | ND               | ug/m3               | 0.050        | 0.0044   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| rans-1,2-Dichloroethene              | ND               | ug/m3               | 0.050        | 0.0075   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| rans-1,3-Dichloropropene             | ND               | ug/m3               | 0.050        | 0.013    | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| I,1-Difluoroethane                   | 0.70             | ug/m3               | 5.0          | 0.0027   | EPA-TO-15-SIM                                       | ND         | J            | 2   |  |  |
| Ethylbenzene                         | 0.26             | ug/m3               | 0.050        | 0.017    | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| Methylene chloride                   | ND               | ug/m3               | 0.20         | 0.0077   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| Fetrachloroethene                    | ND               | ug/m3               | 0.10         | 0.011    | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| Foluene                              | 1.8              | ug/m3               | 0.50         | 0.031    | EPA-TO-15-SIM                                       | ND         | A01          | 1   |  |  |
| 1,1,1-Trichloroethane                | ND               | ug/m3               | 0.10         | 0.0055   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| 1,1,2-Trichloroethane                | ND               | ug/m3               | 0.10         | 0.0055   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| richloroethene                       | ND               | ug/m3               | 0.10         | 0.0095   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| Frichlorofluoromethane               | 1.4              | ug/m3               | 0.050        | 0.0057   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| ,1,2-Trichloro-1,2,2-trifluoroethane | 0.65             | ug/m3               | 0.10         | 0.0078   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| /inyl chloride                       | ND               | ug/m3               | 0.020        | 0.0046   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| o- & m-Xylenes                       | 0.97             | ug/m3               | 0.050        | 0.0082   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| o-Xylene                             | 0.32             | ug/m3               | 0.050        | 0.0044   | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| otal Xylenes                         | 1.3              | ug/m3               | 0.10         | 0.013    | EPA-TO-15-SIM                                       | ND         |              | 2   |  |  |
| -Bromofluorobenzene (Surrogate)      | 92.7             | %                   | 50 - 150 (LC | L - UCL) | EPA-TO-15-SIM                                       |            |              | 1   |  |  |
| -Bromofluorobenzene (Surrogate)      | 93.9             | %                   | 50 - 150 (LC | L - UCL) | EPA-TO-15-SIM                                       |            |              | 2   |  |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report tappy to the samples analyzed in accordance with the characteristic assumes no responsibility for report atterior has be reported at the analyzed report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11420305 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001420395



Reported: 05/01/2023 14:46 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample I | <b>D:</b> 2307790-10 | Client San     | nple Name:     | AA-0.125MI-2 | 20230417-D, 4/18 | 3/2023 11:47 | :00AM, Clier | nt        |
|--------------|----------------------|----------------|----------------|--------------|------------------|--------------|--------------|-----------|
|              |                      |                | Run            |              |                  |              | QC           |           |
| DCN          | Method               | Prep Date      | Date/Time      | Analyst      | Instrument       | Dilution     | Batch ID     |           |
| 1            | EPA-TO-15-SIM        | 04/24/23 13:09 | 04/25/23 04:22 | BEP          | MS-A1            | 5            | B164737      | EPA TO-15 |
| 2            | EPA-TO-15-SIM        | 04/24/23 13:09 | 04/24/23 21:26 | BEP          | MS-A1            | 1            | B164737      | EPA TO-15 |

DCN = Data Continuation Number

Page 35 of 43



Reported:05/01/2023 14:46Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307790-10 | Client Sampl | e Name: | AA-0.125 | VII-202304 | 17-D, 4/18/2023 | 11:47:00AM, | Client       |     |
|----------------|------------|--------------|---------|----------|------------|-----------------|-------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL        | Method          | MB<br>Bias  | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 2.1          | ppmv    | 2.0      | 1.8        | ASTM-D1946      | ND          |              | 1   |

|     |            |                | Run            |         |            |          | QC       |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/26/23 08:19 | 04/26/23 18:30 | RMK     | GC-A1      | 1        | B164949  | No Prep     |



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Method Blank Analysis**

| Constituent                           | QC Sample ID | MB Result | Units | PQL     | MDL           | Lab Quals | Run # |
|---------------------------------------|--------------|-----------|-------|---------|---------------|-----------|-------|
| QC Batch ID: B164737                  |              |           |       |         |               |           |       |
| Acetone                               | B164737-BLK1 | ND        | ug/m3 | 1.0     | 0.0075        |           | 1     |
| Benzene                               | B164737-BLK1 | ND        | ug/m3 | 0.050   | 0.0032        |           | 1     |
| Benzyl chloride                       | B164737-BLK1 | ND        | ug/m3 | 0.50    | 0.0052        |           | 1     |
| Carbon tetrachloride                  | B164737-BLK1 | ND        | ug/m3 | 0.20    | 0.0063        |           | 1     |
| Chlorobenzene                         | B164737-BLK1 | ND        | ug/m3 | 0.10    | 0.0079        |           | 1     |
| Chloroform                            | B164737-BLK1 | ND        | ug/m3 | 0.050   | 0.0058        |           | 1     |
| 1,2-Dibromoethane                     | B164737-BLK1 | ND        | ug/m3 | 0.20    | 0.014         |           | 1     |
| 1,2-Dichlorobenzene                   | B164737-BLK1 | ND        | ug/m3 | 0.20    | 0.011         |           | 1     |
| 1,3-Dichlorobenzene                   | B164737-BLK1 | ND        | ug/m3 | 0.20    | 0.013         |           | 1     |
| 1,4-Dichlorobenzene                   | B164737-BLK1 | ND        | ug/m3 | 0.20    | 0.016         |           | 1     |
| Dichlorodifluoromethane               | B164737-BLK1 | ND        | ug/m3 | 0.050   | 0.0052        |           | 1     |
| 1,1-Dichloroethane                    | B164737-BLK1 | ND        | ug/m3 | 0.050   | 0.0041        |           | 1     |
| 1,2-Dichloroethane                    | B164737-BLK1 | ND        | ug/m3 | 0.10    | 0.0046        |           | 1     |
| 1,1-Dichloroethene                    | B164737-BLK1 | ND        | ug/m3 | 0.050   | 0.0078        |           | 1     |
| cis-1,2-Dichloroethene                | B164737-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 1     |
| trans-1,2-Dichloroethene              | B164737-BLK1 | ND        | ug/m3 | 0.050   | 0.0075        |           | 1     |
| trans-1,3-Dichloropropene             | B164737-BLK1 | ND        | ug/m3 | 0.050   | 0.013         |           | 1     |
| 1,1-Difluoroethane                    | B164737-BLK1 | ND        | ug/m3 | 5.0     | 0.0027        |           | 1     |
| Ethylbenzene                          | B164737-BLK1 | ND        | ug/m3 | 0.050   | 0.017         |           | 1     |
| Methylene chloride                    | B164737-BLK1 | ND        | ug/m3 | 0.20    | 0.0077        |           | 1     |
| Tetrachloroethene                     | B164737-BLK1 | ND        | ug/m3 | 0.10    | 0.011         |           | 1     |
| Toluene                               | B164737-BLK1 | ND        | ug/m3 | 0.10    | 0.0062        |           | 1     |
| 1,1,1-Trichloroethane                 | B164737-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 1     |
| 1,1,2-Trichloroethane                 | B164737-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 1     |
| Trichloroethene                       | B164737-BLK1 | ND        | ug/m3 | 0.10    | 0.0095        |           | 1     |
| Trichlorofluoromethane                | B164737-BLK1 | ND        | ug/m3 | 0.050   | 0.0057        |           | 1     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | B164737-BLK1 | ND        | ug/m3 | 0.10    | 0.0078        |           | 1     |
| Vinyl chloride                        | B164737-BLK1 | ND        | ug/m3 | 0.020   | 0.0046        |           | 1     |
| p- & m-Xylenes                        | B164737-BLK1 | ND        | ug/m3 | 0.050   | 0.0082        |           | 1     |
| o-Xylene                              | B164737-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 1     |
| Total Xylenes                         | B164737-BLK1 | ND        | ug/m3 | 0.10    | 0.013         |           | 1     |
| 4-Bromofluorobenzene (Surrogate)      | B164737-BLK1 | 87.0      | %     | 50 - 15 | 0 (LCL - UCL) |           | 1     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

1001420395 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Method Blank Analysis**

|       |              |         |               |           | Run            |         |            |          |  |
|-------|--------------|---------|---------------|-----------|----------------|---------|------------|----------|--|
| Run # | QC Sample ID | QC Type | Method        | Prep Date | Date Time      | Analyst | Instrument | Dilution |  |
| 1     | B164737-BLK1 | PB      | EPA-TO-15-SIM | 04/24/23  | 04/24/23 14:03 | BEP     | MS-A1      | 1        |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. ID: 1001420395 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

|                        |                             |             |                    |                    |                |              | •          |                      |       |       |          |
|------------------------|-----------------------------|-------------|--------------------|--------------------|----------------|--------------|------------|----------------------|-------|-------|----------|
|                        |                             |             |                    |                    |                |              |            | Control I            | imits |       |          |
|                        |                             |             |                    | Spike              |                | Percent      |            | Percent              |       | Lab   |          |
| Constituent            | QC Sample ID                | Туре        | Result             | Level              | Units          | Recovery     | RPD        | Recovery             | RPD   | Quals | Run #    |
| QC Batch ID: B164737   |                             |             |                    |                    |                |              |            |                      |       |       |          |
| Benzene                | <br>B164737-BS1             | LCS         | 0.25753            | 0.31948            | ug/m3          | 80.6         |            | 70 - 130             |       |       | 1        |
|                        | B164737-BSD1                | LCSD        | 0.25938            | 0.31948            | ug/m3          | 81.2         | 0.7        | 70 - 130             | 30    |       | 2        |
| Benzyl chloride        | B164737-BS1                 | LCS         | 0.48914            | 0.51772            | ug/m3          | 94.5         |            | 70 - 130             |       | J     | 1        |
|                        | B164737-BSD1                | LCSD        | 0.53160            | 0.51772            | ug/m3          | 103          | 8.3        | 70 - 130             | 30    | -     | 2        |
| Carbon tetrachloride   | B164737-BS1                 | LCS         | 0.60133            | 0.62913            | ug/m3          | 95.6         |            | 70 - 130             |       |       | 1        |
|                        | B164737-BSD1                | LCSD        | 0.60460            | 0.62913            | ug/m3          | 96.1         | 0.5        | 70 - 130             | 30    |       | 2        |
| Chlorobenzene          | B164737-BS1                 | LCS         | 0.47734            | 0.46036            | ug/m3          | 104          |            | 70 - 130             |       |       | 1        |
| Chioroberizene         | B164737-BSD1                | LCS         | 0.48393            | 0.46036            | ug/m3          | 105          | 1.4        | 70 - 130<br>70 - 130 | 30    |       | 2        |
| Chloroform             | B164737-BS1                 |             | 0.49592            | 0.48825            | -              | 102          |            | 70 - 130             |       |       | 1        |
| Chioroioitti           | B164737-BSD1                | LCS<br>LCSD | 0.49592            | 0.48825            | ug/m3<br>ug/m3 | 102          | 0.2        | 70 - 130<br>70 - 130 | 30    |       | 2        |
|                        |                             |             |                    |                    | -              |              | 0.2        |                      |       |       |          |
| 1,2-Dibromoethane      | B164737-BS1<br>B164737-BSD1 | LCS         | 0.85348            | 0.76835<br>0.76835 | ug/m3          | 111<br>112   | 0.5        | 70 - 130<br>70 - 130 | 30    |       | 1<br>2   |
|                        |                             | LCSD        | 0.85817            |                    | ug/m3          |              | 0.5        |                      | 30    |       |          |
| 1,2-Dichlorobenzene    | B164737-BS1                 | LCS         | 0.67885            | 0.60124            | ug/m3          | 113          | <b>F</b> 4 | 70 - 130             | 20    |       | 1        |
|                        | B164737-BSD1                | LCSD        | 0.64290            | 0.60124            | ug/m3          | 107          | 5.4        | 70 - 130             | 30    |       | 2        |
| 1,3-Dichlorobenzene    | B164737-BS1                 | LCS         | 0.69695            | 0.60124            | ug/m3          | 116          |            | 70 - 130             |       |       | 1        |
|                        | B164737-BSD1                | LCSD        | 0.68469            | 0.60124            | ug/m3          | 114          | 1.8        | 70 - 130             | 30    |       | 2        |
| 1,4-Dichlorobenzene    | B164737-BS1                 | LCS         | 0.70381            | 0.60124            | ug/m3          | 117          |            | 70 - 130             |       |       | 1        |
|                        | B164737-BSD1                | LCSD        | 0.68246            | 0.60124            | ug/m3          | 114          | 3.1        | 70 - 130             | 30    |       | 2        |
| 1,1-Dichloroethane     | B164737-BS1                 | LCS         | 0.39276            | 0.40474            | ug/m3          | 97.0         |            | 70 - 130             |       |       | 1        |
|                        | B164737-BSD1                | LCSD        | 0.39142            | 0.40474            | ug/m3          | 96.7         | 0.3        | 70 - 130             | 30    |       | 2        |
| 1,2-Dichloroethane     | B164737-BS1                 | LCS         | 0.38345            | 0.40474            | ug/m3          | 94.7         |            | 70 - 130             |       |       | 1        |
|                        | B164737-BSD1                | LCSD        | 0.38624            | 0.40474            | ug/m3          | 95.4         | 0.7        | 70 - 130             | 30    |       | 2        |
| 1,1-Dichloroethene     | B164737-BS1                 | LCS         | 0.33175            | 0.39649            | ug/m3          | 83.7         |            | 70 - 130             |       |       | 1        |
|                        | B164737-BSD1                | LCSD        | 0.33532            | 0.39649            | ug/m3          | 84.6         | 1.1        | 70 - 130             | 30    |       | 2        |
| cis-1,2-Dichloroethene | B164737-BS1                 | LCS         | 0.33658            | 0.39649            | ug/m3          | 84.9         |            | 70 - 130             |       |       | 1        |
|                        | B164737-BSD1                | LCSD        | 0.34313            | 0.39649            | ug/m3          | 86.5         | 1.9        | 70 - 130             | 30    |       | 2        |
| Methylene chloride     | B164737-BS1                 | LCS         | 0.36408            | 0.34737            | ug/m3          | 105          |            | 70 - 130             |       |       | 1        |
| ,                      | B164737-BSD1                | LCSD        | 0.37072            | 0.34737            | ug/m3          | 107          | 1.8        | 70 - 130             | 30    |       | 2        |
| Tetrachloroethene      | B164737-BS1                 | LCS         | 0.75110            | 0.67825            | ug/m3          | 111          |            | 70 - 130             |       |       | 1        |
|                        | B164737-BSD1                | LCSD        | 0.75618            | 0.67825            | ug/m3          | 111          | 0.7        | 70 - 130             | 30    |       | 2        |
| Toluene                | B164737-BS1                 | LCS         | 0.36064            | 0.37684            | ug/m3          | 95.7         |            | 70 - 130             |       |       | 1        |
|                        | B164737-BSD1                | LCSD        | 0.36245            | 0.37684            | ug/m3          | 96.2         | 0.5        | 70 - 130             | 30    |       | 2        |
| 1,1,1-Trichloroethane  | B164737-BS1                 | LCS         | 0.52821            | 0.54562            | ug/m3          | 96.8         |            | 70 - 130             |       |       | 1        |
|                        | B164737-BSD1                | LCS         | 0.52821            | 0.54562            | ug/m3<br>ug/m3 | 96.8<br>96.1 | 0.7        | 70 - 130<br>70 - 130 | 30    |       | 2        |
| 1.1.0 Trichlereethare  |                             |             |                    |                    | -              |              | <b>.</b>   |                      | 50    |       |          |
| 1,1,2-Trichloroethane  | B164737-BS1<br>B164737-BSD1 | LCSD        | 0.64672<br>0.64923 | 0.54562<br>0.54562 | ug/m3<br>ug/m3 | 119<br>119   | 0.4        | 70 - 130<br>70 - 130 | 30    |       | 1<br>2   |
|                        | D104/37-D3D1                | LCSD        | 0.04823            | 0.04002            | uy/ma          | 119          | 0.4        | 70-130               | 30    |       | <u>۲</u> |

#### **Quality Control Report - Laboratory Control Sample**

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001420395



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

|                                  |              |      |         |                |       |                     |     | Control I           | imits |              |       |
|----------------------------------|--------------|------|---------|----------------|-------|---------------------|-----|---------------------|-------|--------------|-------|
| Constituent                      | QC Sample ID | Туре | Result  | Spike<br>Level | Units | Percent<br>Recovery | RPD | Percent<br>Recovery | RPD   | Lab<br>Quals | Run # |
| QC Batch ID: B164737             |              |      |         |                |       |                     |     |                     |       |              |       |
| Trichloroethene                  | B164737-BS1  | LCS  | 0.57859 | 0.53737        | ug/m3 | 108                 |     | 70 - 130            |       |              | 1     |
|                                  | B164737-BSD1 | LCSD | 0.58375 | 0.53737        | ug/m3 | 109                 | 0.9 | 70 - 130            | 30    |              | 2     |
| Vinyl chloride                   | B164737-BS1  | LCS  | 0.26973 | 0.25562        | ug/m3 | 106                 |     | 70 - 130            |       |              | 1     |
|                                  | B164737-BSD1 | LCSD | 0.27632 | 0.25562        | ug/m3 | 108                 | 2.4 | 70 - 130            | 30    |              | 2     |
| p- & m-Xylenes                   | B164737-BS1  | LCS  | 0.89265 | 0.86843        | ug/m3 | 103                 |     | 70 - 130            |       |              | 1     |
|                                  | B164737-BSD1 | LCSD | 0.87685 | 0.86843        | ug/m3 | 101                 | 1.8 | 70 - 130            | 30    |              | 2     |
| o-Xylene                         | B164737-BS1  | LCS  | 0.39387 | 0.43421        | ug/m3 | 90.7                |     | 70 - 130            |       |              | 1     |
|                                  | B164737-BSD1 | LCSD | 0.38940 | 0.43421        | ug/m3 | 89.7                | 1.1 | 70 - 130            | 30    |              | 2     |
| Total Xylenes                    | B164737-BS1  | LCS  | 1.2865  | 1.3026         | ug/m3 | 98.8                |     | 70 - 130            |       |              | 1     |
|                                  | B164737-BSD1 | LCSD | 1.2663  | 1.3026         | ug/m3 | 97.2                | 1.6 | 70 - 130            | 30    |              | 2     |
| 4-Bromofluorobenzene (Surrogate) | B164737-BS1  | LCS  | 3.68    | 3.58           | ug/m3 | 103                 |     | 50 - 150            |       |              | 1     |
|                                  | B164737-BSD1 | LCSD | 3.66    | 3.58           | ug/m3 | 102                 | 0.5 | 50 - 150            |       |              | 2     |

#### **Quality Control Report - Laboratory Control Sample**

|       |              |         |               |           | Run            |         |            |          |
|-------|--------------|---------|---------------|-----------|----------------|---------|------------|----------|
| Run # | QC Sample ID | QC Type | Method        | Prep Date | Date Time      | Analyst | Instrument | Dilution |
| 1     | B164737-BS1  | LCS     | EPA-TO-15-SIM | 04/24/23  | 04/24/23 12:48 | BEP     | MS-A1      | 1        |
| 2     | B164737-BSD1 | LCSD    | EPA-TO-15-SIM | 04/24/23  | 04/24/23 13:27 | BEP     | MS-A1      | 1        |



Reported: 05/01/2023 14:46 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

#### Fixed Gases by GC/TCD (ASTM D1946)

#### **Quality Control Report - Method Blank Analysis**

| Constituent            |                       |         | QC Sample ID | MB Result | Units            | PC      | ΣL I       | MDL I   | _ab Quals | Run # |
|------------------------|-----------------------|---------|--------------|-----------|------------------|---------|------------|---------|-----------|-------|
| QC Bat<br>Methane (CH4 | <b>ch ID: B164949</b> |         | B164949-BLK1 | ND        | ppmv             | 2       | .0         | 1.8     |           | 1     |
| Run #                  | QC Sample ID          | QC Type | Method       | Prep Date | Run<br>Date Time | Analyst | Instrument | Dilutio | <br>ו     |       |
| 1                      | B164949-BLK1          | PB      | ASTM-D1946   | 04/26/23  | 04/26/23 14:28   | RMK     | GC-A1      | 1       |           |       |



Reported:05/01/202314:46Project:City TerraceProject Number:2855Project Manager:April McGuire

### Fixed Gases by GC/TCD (ASTM D1946)

#### **Quality Control Report - Laboratory Control Sample**

|                      |              |      | Result |                |       |                     |     | Control I           | <u>.s</u> |              |       |
|----------------------|--------------|------|--------|----------------|-------|---------------------|-----|---------------------|-----------|--------------|-------|
| Constituent          | QC Sample ID | Туре |        | Spike<br>Level | Units | Percent<br>Recovery | RPD | Percent<br>Recovery | RPD       | Lab<br>Quals | Run # |
| QC Batch ID: B164949 |              |      |        |                |       |                     |     |                     |           |              |       |
| Methane (CH4)        | B164949-BS1  | LCS  | 18969  | 18000          | ppmv  | 105                 |     | 70 - 130            |           |              | 1     |
|                      | B164949-BSD1 | LCSD | 18846  | 18000          | ppmv  | 105                 | 0.7 | 70 - 130            | 30        |              | 2     |

|       |              |         |            |           | Run            |         |            |          |  |
|-------|--------------|---------|------------|-----------|----------------|---------|------------|----------|--|
| Run # | QC Sample ID | QC Type | Method     | Prep Date | Date Time      | Analyst | Instrument | Dilution |  |
| 1     | B164949-BS1  | LCS     | ASTM-D1946 | 04/26/23  | 04/26/23 13:48 | RMK     | GC-A1      | 1        |  |
| 2     | B164949-BSD1 | LCSD    | ASTM-D1946 | 04/26/23  | 04/26/23 14:08 | RMK     | GC-A1      | 1        |  |

Page 42 of 43



#### Reported: 05/01/2023 14:46 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

#### **Notes And Definitions**

- MDL Method Detection Limit
- ND Analyte Not Detected
- PQL Practical Quantitation Limit
- A01 Detection and quantitation limits are raised due to sample dilution.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Date of Report: 04/26/2023

April McGuire

Roux Associates, Inc -Long Beach 5150 E. Pacific Coast Hwy, Suite 450 Long Beach, CA 90804

Client Project:2855BCL Project:City TerraceBCL Work Order:2307789Invoice ID:B474479

Enclosed are the results of analyses for samples received by the laboratory on 4/19/2023. If you have any questions concerning this report, please feel free to contact me.

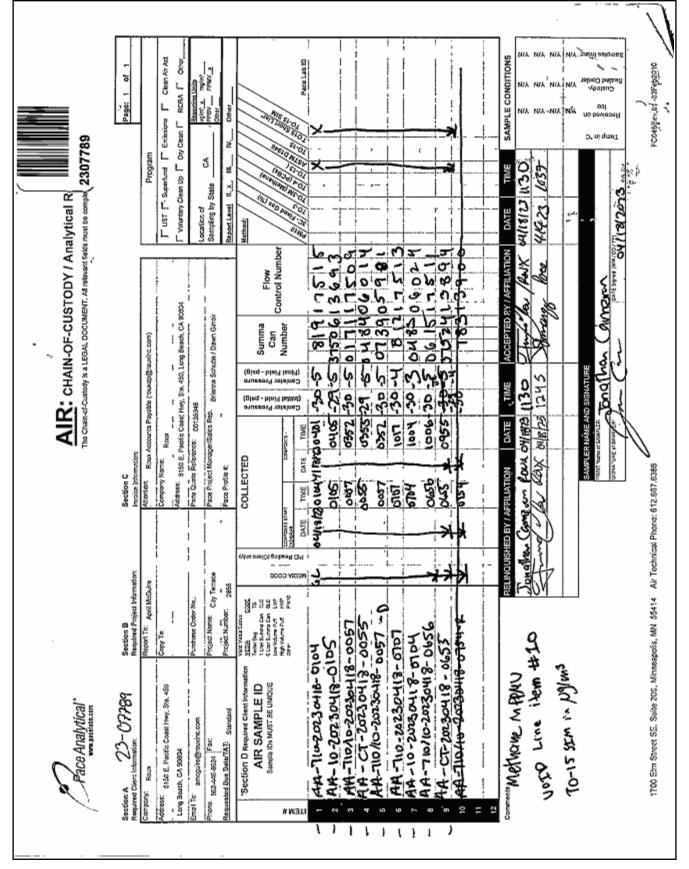
Sincerely,

Contact Person: Brianna Schutte Client Services Rep

A

Stuart Buttram Operations Manager

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101




#### **Table of Contents**

| Sample Information                                            |    |
|---------------------------------------------------------------|----|
| Chain of Custody and Cooler Receipt form                      |    |
| Laboratory / Client Sample Cross Reference                    | 5  |
| Sample Results                                                |    |
| 2307789-01 - AA-710-20230418-0104                             |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) | 7  |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307789-02 - AA-10-20230418-0105                              |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307789-03 - AA-710/10-20230418-0057                          |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307789-04 - AA-CT-20230418-0055                              |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307789-05 - AA-710/10-20230418-0057-D                        |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            | 21 |
| 2307789-06 - AA-710-20230418-0707                             |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307789-07 - AA-10-20230418-0704                              |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307789-08 - AA-710/10-20230418-0656                          |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2307789-09 - AA-CT-20230418-0655                              |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| Quality Control Reports                                       |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Method Blank Analysis                                         |    |
| Laboratory Control Sample                                     |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| Method Blank Analysis                                         |    |
| Laboratory Control Sample                                     | 39 |
| Notes                                                         |    |
| Notes and Definitions                                         |    |



#### Chain of Custody and Cooler Receipt Form for 2307789 Page 1 of 2



The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001419017



#### Chain of Custody and Cooler Receipt Form for 2307789 Page 2 of 2

| Submission #: 23-07789                                                    |                                  |                                                                                                                | RECEIP      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Page       | Of | and the second second                  |                                                                                                                |
|---------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|----------------------------------------|----------------------------------------------------------------------------------------------------------------|
| SHIPPING INFO<br>Fed Ex 13↓ UPS □ GSO/G                                   | RMATION<br>SLS - H<br>her - (Spe | Hand Deli                                                                                                      | ivery 🗆     | Ice CI   | hest 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G CONTA<br>None 🗆<br>ecify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Box N      |    | FREE L<br>YES D<br>W /                 | NO BL                                                                                                          |
| Refrigerant: Ice D Blue Ice D                                             | ] None                           | N 0                                                                                                            | Other 🗆     | Comme    | ents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 March 10 |            |    |                                        |                                                                                                                |
| Custody Seals Ice Chest 🗆                                                 |                                  | ners 🗆                                                                                                         | -           | Com      | and the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |    |                                        |                                                                                                                |
| All samples received? Yes No 🗆                                            | All sample                       | es contain                                                                                                     | ers Intact? | ves t    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Descri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ction(e) m |    | ? Yes D N                              |                                                                                                                |
|                                                                           |                                  | the second s | Container:  |          | and the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | non(s) in  |    |                                        | the second s |
| 2010                                                                      | emperature                       |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2°c        |    | rime <u>9</u> .1<br>st Init <u>514</u> | 14.037                                                                                                         |
| SAMPLE CONTAINERS                                                         |                                  |                                                                                                                |             |          | SAMPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LE NUMBERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s          |    |                                        |                                                                                                                |
|                                                                           | 1                                | 2                                                                                                              | 3           | 4        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7          | 8  |                                        | 10                                                                                                             |
| OT PE UNPRES                                                              |                                  |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |    |                                        |                                                                                                                |
| 402/802/1602 PE UNPRES                                                    |                                  |                                                                                                                |             | +        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |    |                                        |                                                                                                                |
| 200 Cr <sup>48</sup>                                                      |                                  | +                                                                                                              | +           | +        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -          |    |                                        |                                                                                                                |
| OT INORGANIC CHEMICAL METALS<br>INORGANIC CHEMICAL METALS 40z / 80z / 16s |                                  |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |    |                                        |                                                                                                                |
| PT CYANIDE                                                                | x                                |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +++-       |    |                                        |                                                                                                                |
| PT NITROGEN FORMS                                                         |                                  |                                                                                                                |             | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ++         |    | +                                      |                                                                                                                |
| PT TOTAL SULFIDE                                                          |                                  | -                                                                                                              |             |          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5          |    |                                        | +                                                                                                              |
| 202. NUTRATE / NITRITE                                                    |                                  |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0          |    |                                        | +                                                                                                              |
| PT TOTAL ORGANIC CARBON                                                   |                                  |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | III-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8          | -  |                                        | -                                                                                                              |
| PT CHEMICAL OXYGEN DEMAND                                                 |                                  |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (J)        |    | -                                      |                                                                                                                |
| PIA PHENOLICS                                                             |                                  |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |    |                                        |                                                                                                                |
| 40ml VOA VIAL TRAVEL BLANK                                                | _                                |                                                                                                                | -           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\geq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -          |    |                                        |                                                                                                                |
| 40ml VOA VIAL                                                             | _                                | _                                                                                                              | _           |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -          |    |                                        |                                                                                                                |
| QT EPA 1664B                                                              | _                                |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 in e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |    |                                        |                                                                                                                |
| PTODOR                                                                    |                                  |                                                                                                                | '           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3          |    |                                        |                                                                                                                |
| RADIOLOGICAL                                                              |                                  |                                                                                                                | '           | <b> </b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2          |    |                                        |                                                                                                                |
| BACTERIOLOGICAL                                                           | _                                |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - I.       |    |                                        |                                                                                                                |
| 40 ml VOA VIAL- 504                                                       |                                  |                                                                                                                |             |          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |    |                                        |                                                                                                                |
| QT EPA 508/608.3/8081A<br>QT EPA 515.1/8151A                              |                                  | +                                                                                                              | +           |          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -          |    |                                        |                                                                                                                |
| QT EPA 525,2                                                              |                                  |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |    |                                        |                                                                                                                |
| QT EPA 525,2 TRAVEL BLANK                                                 | 1                                |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |    |                                        | +                                                                                                              |
| 40ml EPA 547                                                              | 1                                |                                                                                                                | +           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |    |                                        |                                                                                                                |
| 40ml EPA 531.1                                                            |                                  |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | -  |                                        | +                                                                                                              |
| ioz EPA 548.1                                                             |                                  |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 1  |                                        | 1                                                                                                              |
| 9T EPA 549,2                                                              |                                  |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 1  |                                        |                                                                                                                |
| QT EPA 8015M                                                              |                                  |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |    |                                        |                                                                                                                |
| 2T EPA 8270C                                                              |                                  |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |    |                                        |                                                                                                                |
| az/16oz/32oz AMBER                                                        |                                  |                                                                                                                |             |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |    |                                        |                                                                                                                |
| az/16az/32az.JAR                                                          |                                  |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |    |                                        |                                                                                                                |
| OIL SLEEVE                                                                |                                  |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |    |                                        |                                                                                                                |
| CBVIAL                                                                    |                                  |                                                                                                                |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |    |                                        |                                                                                                                |
| LASTIC BAG                                                                |                                  |                                                                                                                | ++          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |    |                                        |                                                                                                                |
| EDLAR BAG                                                                 |                                  | +                                                                                                              | ++          |          | <u>├</u> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |    |                                        |                                                                                                                |
| ERROUS IRON<br>NCORE                                                      |                                  |                                                                                                                | ++          |          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |    |                                        |                                                                                                                |
|                                                                           |                                  | +                                                                                                              | ++          |          | <b>├</b> ───┤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |    |                                        |                                                                                                                |
| MART KIT<br>UMMA CANISTER GL                                              | A                                | -                                                                                                              |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ň.         | 4  | -                                      |                                                                                                                |
|                                                                           | I A                              | 1 /1                                                                                                           |             | A        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A          | 1  | A                                      |                                                                                                                |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 01419017 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

#### Laboratory / Client Sample Cross Reference

| Laboratory | Client Sample Informati | on                        |                |                     |
|------------|-------------------------|---------------------------|----------------|---------------------|
| 2307789-01 | COC Number:             |                           | Receive Date:  | 04/19/2023 10:37    |
|            | Project Number:         |                           | Sampling Date: | 04/18/2023 04:01    |
|            | Sampling Location:      |                           | Sample Depth:  |                     |
|            | Sampling Point:         | AA-710-20230418-0104      | Lab Matrix:    | Air                 |
|            | Sampled By:             | Client                    | Sample Type:   | Vapor or Air        |
|            | oumpieu by:             |                           | Campie Type.   |                     |
| 2307789-02 | COC Number:             |                           | Receive Date:  | 04/19/2023 10:37    |
|            | Project Number:         |                           | Sampling Date: | 04/18/2023 04:05    |
|            | Sampling Location:      |                           | Sample Depth:  |                     |
|            | Sampling Point:         | AA-10-20230418-0105       | Lab Matrix:    | Air                 |
|            | Sampled By:             | Client                    | Sample Type:   | Vapor or Air        |
|            |                         |                           |                |                     |
| 2307789-03 | COC Number:             |                           | Receive Date:  | 04/19/2023 10:37    |
|            | Project Number:         |                           | Sampling Date: | 04/18/2023 03:52    |
|            | Sampling Location:      |                           | Sample Depth:  |                     |
|            | Sampling Point:         | AA-710/10-20230418-0057   | Lab Matrix:    | Air                 |
|            | Sampled By:             | Client                    | Sample Type:   | Vapor or Air        |
| 2307789-04 |                         |                           |                | 04/40/0000 40:07    |
| 2307789-04 | COC Number:             |                           | Receive Date:  | 04/19/2023 10:37    |
|            | Project Number:         |                           | Sampling Date: | 04/18/2023 03:55    |
|            | Sampling Location:      |                           | Sample Depth:  |                     |
|            | Sampling Point:         | AA-CT-20230418-0055       | Lab Matrix:    | Air                 |
|            | Sampled By:             | Client                    | Sample Type:   | Vapor or Air        |
| 2307789-05 | COC Number:             |                           | Receive Date:  | 04/19/2023 10:37    |
|            | Project Number:         |                           | Sampling Date: | 04/18/2023 03:52    |
|            | Sampling Location:      |                           | Sample Depth:  |                     |
|            | Sampling Point:         | AA-710/10-20230418-0057-D | Lab Matrix:    | Air                 |
|            | Sampled By:             | Client                    | Sample Type:   | Vapor or Air        |
|            |                         |                           |                |                     |
| 2307789-06 | COC Number:             |                           | Receive Date:  | 04/19/2023 10:37    |
|            | Project Number:         |                           | Sampling Date: | 04/18/2023 10:17    |
|            | Sampling Location:      |                           | Sample Depth:  |                     |
|            | Sampling Point:         | AA-710-20230418-0707      | Lab Matrix:    | Air                 |
|            | Sampled By:             | Client                    | Sample Type:   | Vapor or Air        |
| 2307789-07 | COC Number:             |                           | Receive Date:  | 04/19/2023 10:37    |
|            |                         |                           |                | 04/19/2023 10:37    |
|            | Project Number:         |                           | Sampling Date: |                     |
|            | Sampling Location:      |                           | Sample Depth:  | <br>A :             |
|            | Sampling Point:         | AA-10-20230418-0704       | Lab Matrix:    | Air<br>Vapar ar Air |
|            | Sampled By:             | Client                    | Sample Type:   | Vapor or Air        |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 1001419017 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

#### Laboratory / Client Sample Cross Reference

| Laboratory | Client Sample Informati | on                      |                |                  |
|------------|-------------------------|-------------------------|----------------|------------------|
| 2307789-08 | COC Number:             |                         | Receive Date:  | 04/19/2023 10:37 |
|            | Project Number:         |                         | Sampling Date: | 04/18/2023 10:06 |
|            | Sampling Location:      |                         | Sample Depth:  |                  |
|            | Sampling Point:         | AA-710/10-20230418-0656 | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                  | Sample Type:   | Vapor or Air     |
| 2307789-09 | COC Number:             |                         | Receive Date:  | 04/19/2023 10:37 |
|            | Project Number:         |                         | Sampling Date: | 04/18/2023 09:55 |
|            | Sampling Location:      |                         | Sample Depth:  |                  |
|            | Sampling Point:         | AA-CT-20230418-0655     | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                  | Sample Type:   | Vapor or Air     |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307789-0              | 1 Client Sampl | e Name: | AA-710-2     | 0230418-0 | 104, 4/18/2023 4 | :01:00AM, C | lient        |     |
|---------------------------------------|----------------|---------|--------------|-----------|------------------|-------------|--------------|-----|
| Constituent                           | Result         | Units   | PQL          | MDL       | Method           | MB<br>Bias  | Lab<br>Quals | DCN |
| Acetone                               | 3.4            | ug/m3   | 1.0          | 0.0075    | EPA-TO-15-SIM    | ND          |              | 1   |
| Benzene                               | 0.58           | ug/m3   | 0.050        | 0.0032    | EPA-TO-15-SIM    | ND          |              | 1   |
| Benzyl chloride                       | ND             | ug/m3   | 0.50         | 0.0052    | EPA-TO-15-SIM    | ND          |              | 1   |
| Carbon tetrachloride                  | ND             | ug/m3   | 0.20         | 0.0063    | EPA-TO-15-SIM    | ND          |              | 1   |
| Chlorobenzene                         | ND             | ug/m3   | 0.10         | 0.0079    | EPA-TO-15-SIM    | ND          |              | 1   |
| Chloroform                            | ND             | ug/m3   | 0.050        | 0.0058    | EPA-TO-15-SIM    | ND          |              | 1   |
| 1,2-Dibromoethane                     | ND             | ug/m3   | 0.20         | 0.014     | EPA-TO-15-SIM    | ND          |              | 1   |
| 1,2-Dichlorobenzene                   | ND             | ug/m3   | 0.20         | 0.011     | EPA-TO-15-SIM    | ND          |              | 1   |
| 1,3-Dichlorobenzene                   | ND             | ug/m3   | 0.20         | 0.013     | EPA-TO-15-SIM    | ND          |              | 1   |
| 1,4-Dichlorobenzene                   | ND             | ug/m3   | 0.20         | 0.016     | EPA-TO-15-SIM    | ND          |              | 1   |
| Dichlorodifluoromethane               | 2.1            | ug/m3   | 0.050        | 0.0052    | EPA-TO-15-SIM    | ND          |              | 1   |
| 1,1-Dichloroethane                    | ND             | ug/m3   | 0.050        | 0.0041    | EPA-TO-15-SIM    | ND          |              | 1   |
| 1,2-Dichloroethane                    | ND             | ug/m3   | 0.10         | 0.0046    | EPA-TO-15-SIM    | ND          |              | 1   |
| 1,1-Dichloroethene                    | ND             | ug/m3   | 0.050        | 0.0078    | EPA-TO-15-SIM    | ND          |              | 1   |
| cis-1,2-Dichloroethene                | ND             | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM    | ND          |              | 1   |
| trans-1,2-Dichloroethene              | ND             | ug/m3   | 0.050        | 0.0075    | EPA-TO-15-SIM    | ND          |              | 1   |
| trans-1,3-Dichloropropene             | ND             | ug/m3   | 0.050        | 0.013     | EPA-TO-15-SIM    | ND          |              | 1   |
| 1,1-Difluoroethane                    | 0.52           | ug/m3   | 5.0          | 0.0027    | EPA-TO-15-SIM    | ND          | J            | 1   |
| Ethylbenzene                          | 0.15           | ug/m3   | 0.050        | 0.017     | EPA-TO-15-SIM    | ND          |              | 1   |
| Methylene chloride                    | ND             | ug/m3   | 0.20         | 0.0077    | EPA-TO-15-SIM    | ND          |              | 1   |
| Tetrachloroethene                     | ND             | ug/m3   | 0.10         | 0.011     | EPA-TO-15-SIM    | ND          |              | 1   |
| Toluene                               | 1.6            | ug/m3   | 0.10         | 0.0062    | EPA-TO-15-SIM    | ND          |              | 1   |
| 1,1,1-Trichloroethane                 | ND             | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM    | ND          |              | 1   |
| 1,1,2-Trichloroethane                 | ND             | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM    | ND          |              | 1   |
| Trichloroethene                       | ND             | ug/m3   | 0.10         | 0.0095    | EPA-TO-15-SIM    | ND          |              | 1   |
| Trichlorofluoromethane                | 1.3            | ug/m3   | 0.050        | 0.0057    | EPA-TO-15-SIM    | ND          |              | 1   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.59           | ug/m3   | 0.10         | 0.0078    | EPA-TO-15-SIM    | ND          |              | 1   |
| Vinyl chloride                        | ND             | ug/m3   | 0.020        | 0.0046    | EPA-TO-15-SIM    | ND          |              | 1   |
| p- & m-Xylenes                        | 0.59           | ug/m3   | 0.050        | 0.0082    | EPA-TO-15-SIM    | ND          |              | 1   |
| o-Xylene                              | 0.19           | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM    | ND          |              | 1   |
| Total Xylenes                         | 0.78           | ug/m3   | 0.10         | 0.013     | EPA-TO-15-SIM    | ND          |              | 1   |
| 4-Bromofluorobenzene (Surrogate)      | 98.9           | %       | 50 - 150 (LC | CL - UCL) | EPA-TO-15-SIM    |             |              | 1   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | : 2307789-01  | Client San     | nple Name:     | lame: AA-710-20230418-0104, 4/18/2023 4:01:00AM, Client |            |          |          |           |  |
|---------------|---------------|----------------|----------------|---------------------------------------------------------|------------|----------|----------|-----------|--|
| Run QC        |               |                |                |                                                         |            |          |          |           |  |
| DCN           | Method        | Prep Date      | Date/Time      | Analyst                                                 | Instrument | Dilution | Batch ID |           |  |
| 1             | EPA-TO-15-SIM | 04/19/23 13:39 | 04/20/23 12:40 | BEP                                                     | MS-A2      | 1        | B164497  | EPA TO-15 |  |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307789-01 | Client Sampl | e Name: | AA-710-20230418-0104, 4/18/2023 4:01:00AM, Client |     |            |            |              |     |
|----------------|------------|--------------|---------|---------------------------------------------------|-----|------------|------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL                                               | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 23           | ppmv    | 2.0                                               | 1.8 | ASTM-D1946 | ND         |              | 1   |

|     |            |                | Run            |         |            | QC       |          |             |  |  |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|--|--|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |  |  |
| 1   | ASTM-D1946 | 04/24/23 08:03 | 04/24/23 13:23 | RMK     | GC-A1      | 1        | B164745  | No Prep     |  |  |



Reported: 04/26/2023 12:44 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 230             | 7789-02 | Client Sampl  | e Name: | AA-10-20     | 230418-01 | 05, 4/18/2023 4:0 | 5:00AM, Cli | ent   |                 |
|--------------------------------|---------|---------------|---------|--------------|-----------|-------------------|-------------|-------|-----------------|
| Constituent                    |         | Decult        | Units   | PQL          | MDL       | Method            | MB          | Lab   | DON             |
| Acetone                        |         | Result<br>5.9 | ug/m3   | 1.0          | 0.0075    | EPA-TO-15-SIM     | Bias<br>ND  | Quals | <u>DCN</u><br>1 |
| Benzene                        |         | 0.44          | ug/m3   | 0.050        | 0.0032    | EPA-TO-15-SIM     | ND          |       | 1               |
| Benzyl chloride                |         | ND            | ug/m3   | 0.50         | 0.0052    | EPA-TO-15-SIM     | ND          |       | 1               |
| Carbon tetrachloride           |         | ND            | ug/m3   | 0.20         | 0.0063    | EPA-TO-15-SIM     | ND          |       | 1               |
| Chlorobenzene                  |         | ND            | ug/m3   | 0.10         | 0.0079    | EPA-TO-15-SIM     | ND          |       | 1               |
| Chloroform                     |         | ND            | ug/m3   | 0.050        | 0.0058    | EPA-TO-15-SIM     | ND          |       | 1               |
| 1,2-Dibromoethane              |         | ND            | ug/m3   | 0.20         | 0.014     | EPA-TO-15-SIM     | ND          |       | 1               |
| ,2-Dichlorobenzene             |         | ND            | ug/m3   | 0.20         | 0.011     | EPA-TO-15-SIM     | ND          |       | 1               |
| ,3-Dichlorobenzene             |         | ND            | ug/m3   | 0.20         | 0.013     | EPA-TO-15-SIM     | ND          |       | 1               |
| I,4-Dichlorobenzene            |         | ND            | ug/m3   | 0.20         | 0.016     | EPA-TO-15-SIM     | ND          |       | 1               |
| Dichlorodifluoromethane        |         | 2.1           | ug/m3   | 0.050        | 0.0052    | EPA-TO-15-SIM     | ND          |       | 1               |
| ,1-Dichloroethane              |         | ND            | ug/m3   | 0.050        | 0.0041    | EPA-TO-15-SIM     | ND          |       | 1               |
| ,2-Dichloroethane              |         | ND            | ug/m3   | 0.10         | 0.0046    | EPA-TO-15-SIM     | ND          |       | 1               |
| ,1-Dichloroethene              |         | ND            | ug/m3   | 0.050        | 0.0078    | EPA-TO-15-SIM     | ND          |       | 1               |
| sis-1,2-Dichloroethene         |         | ND            | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM     | ND          |       | 1               |
| rans-1,2-Dichloroethene        |         | ND            | ug/m3   | 0.050        | 0.0075    | EPA-TO-15-SIM     | ND          |       | 1               |
| rans-1,3-Dichloropropene       |         | ND            | ug/m3   | 0.050        | 0.013     | EPA-TO-15-SIM     | ND          |       | 1               |
| I,1-Difluoroethane             |         | 0.73          | ug/m3   | 5.0          | 0.0027    | EPA-TO-15-SIM     | ND          | J     | 1               |
| Ethylbenzene                   |         | 0.14          | ug/m3   | 0.050        | 0.017     | EPA-TO-15-SIM     | ND          |       | 1               |
| Methylene chloride             |         | ND            | ug/m3   | 0.20         | 0.0077    | EPA-TO-15-SIM     | ND          |       | 1               |
| etrachloroethene               |         | ND            | ug/m3   | 0.10         | 0.011     | EPA-TO-15-SIM     | ND          |       | 1               |
| Toluene                        |         | 1.6           | ug/m3   | 0.10         | 0.0062    | EPA-TO-15-SIM     | ND          |       | 1               |
| 1,1,1-Trichloroethane          |         | ND            | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM     | ND          |       | 1               |
| 1,1,2-Trichloroethane          |         | ND            | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM     | ND          |       | 1               |
| Frichloroethene                |         | ND            | ug/m3   | 0.10         | 0.0095    | EPA-TO-15-SIM     | ND          |       | 1               |
| Frichlorofluoromethane         |         | 1.3           | ug/m3   | 0.050        | 0.0057    | EPA-TO-15-SIM     | ND          |       | 1               |
| ,1,2-Trichloro-1,2,2-trifluoro | ethane  | 0.60          | ug/m3   | 0.10         | 0.0078    | EPA-TO-15-SIM     | ND          |       | 1               |
| /inyl chloride                 |         | ND            | ug/m3   | 0.020        | 0.0046    | EPA-TO-15-SIM     | ND          |       | 1               |
| o- & m-Xylenes                 |         | 0.54          | ug/m3   | 0.050        | 0.0082    | EPA-TO-15-SIM     | ND          |       | 1               |
| o-Xylene                       |         | 0.17          | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM     | ND          |       | 1               |
| Fotal Xylenes                  |         | 0.71          | ug/m3   | 0.10         | 0.013     | EPA-TO-15-SIM     | ND          |       | 1               |
| 4-Bromofluorobenzene (Surro    | gate)   | 102           | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM     |             |       | 1               |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.



Reported: 04/26/2023 12:44 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | : 2307789-02  | Client San     | ent Sample Name: AA-10-20230418-0105, 4/18/2023 4:05:00AM, Client |         |            |          |          |           |
|---------------|---------------|----------------|-------------------------------------------------------------------|---------|------------|----------|----------|-----------|
| Run QC        |               |                |                                                                   |         |            |          |          |           |
| DCN           | Method        | Prep Date      | Date/Time                                                         | Analyst | Instrument | Dilution | Batch ID |           |
| 1             | EPA-TO-15-SIM | 04/19/23 13:39 | 04/20/23 14:02                                                    | 2 BEP   | MS-A2      | 1        | B164497  | EPA TO-15 |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307789-02 | Client Sampl | e Name: | AA-10-202 | 230418-01 | 05, 4/18/2023 | 4:05:00AM, Clie | ent          |     |
|----------------|------------|--------------|---------|-----------|-----------|---------------|-----------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL       | MDL       | Method        | MB<br>Bias      | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 1.8          | ppmv    | 2.0       | 1.8       | ASTM-D1946    | ND              | J            | 1   |

|     |            |                | Run            |         |            | QC       |          |             |  |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|--|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |  |
| 1   | ASTM-D1946 | 04/24/23 08:03 | 04/24/23 13:43 | RMK     | GC-A1      | 1        | B164745  | No Prep     |  |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23             | 307789-03 | Client Sampl | e Name: | AA-710/10    | 0-20230418 | 3-0057, 4/18/2023 | 3:52:00AM  | I, Client    |     |
|-------------------------------|-----------|--------------|---------|--------------|------------|-------------------|------------|--------------|-----|
| Constituent                   |           | Result       | Units   | PQL          | MDL        | Method            | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                       |           | 4.3          | ug/m3   | 1.0          | 0.0075     | EPA-TO-15-SIM     | ND         | Quais        | 1   |
| Benzene                       |           | 0.58         | ug/m3   | 0.050        | 0.0032     | EPA-TO-15-SIM     | ND         |              | 1   |
| Benzyl chloride               |           | ND           | ug/m3   | 0.50         | 0.0052     | EPA-TO-15-SIM     | ND         |              | 1   |
| Carbon tetrachloride          |           | ND           | ug/m3   | 0.20         | 0.0063     | EPA-TO-15-SIM     | ND         |              | 1   |
| Chlorobenzene                 |           | ND           | ug/m3   | 0.10         | 0.0079     | EPA-TO-15-SIM     | ND         |              | 1   |
| Chloroform                    |           | ND           | ug/m3   | 0.050        | 0.0058     | EPA-TO-15-SIM     | ND         |              | 1   |
| ,2-Dibromoethane              |           | ND           | ug/m3   | 0.20         | 0.014      | EPA-TO-15-SIM     | ND         |              | 1   |
| ,2-Dichlorobenzene            |           | ND           | ug/m3   | 0.20         | 0.011      | EPA-TO-15-SIM     | ND         |              | 1   |
| ,3-Dichlorobenzene            |           | ND           | ug/m3   | 0.20         | 0.013      | EPA-TO-15-SIM     | ND         |              | 1   |
| I,4-Dichlorobenzene           |           | ND           | ug/m3   | 0.20         | 0.016      | EPA-TO-15-SIM     | ND         |              | 1   |
| Dichlorodifluoromethane       |           | 2.1          | ug/m3   | 0.050        | 0.0052     | EPA-TO-15-SIM     | ND         |              | 1   |
| ,1-Dichloroethane             |           | ND           | ug/m3   | 0.050        | 0.0041     | EPA-TO-15-SIM     | ND         |              | 1   |
| ,2-Dichloroethane             |           | ND           | ug/m3   | 0.10         | 0.0046     | EPA-TO-15-SIM     | ND         |              | 1   |
| ,1-Dichloroethene             |           | ND           | ug/m3   | 0.050        | 0.0078     | EPA-TO-15-SIM     | ND         |              | 1   |
| is-1,2-Dichloroethene         |           | ND           | ug/m3   | 0.050        | 0.0044     | EPA-TO-15-SIM     | ND         |              | 1   |
| rans-1,2-Dichloroethene       |           | ND           | ug/m3   | 0.050        | 0.0075     | EPA-TO-15-SIM     | ND         |              | 1   |
| rans-1,3-Dichloropropene      |           | ND           | ug/m3   | 0.050        | 0.013      | EPA-TO-15-SIM     | ND         |              | 1   |
| ,1-Difluoroethane             |           | 0.58         | ug/m3   | 5.0          | 0.0027     | EPA-TO-15-SIM     | ND         | J            | 1   |
| Ethylbenzene                  |           | 0.16         | ug/m3   | 0.050        | 0.017      | EPA-TO-15-SIM     | ND         |              | 1   |
| lethylene chloride            |           | ND           | ug/m3   | 0.20         | 0.0077     | EPA-TO-15-SIM     | ND         |              | 1   |
| etrachloroethene              |           | ND           | ug/m3   | 0.10         | 0.011      | EPA-TO-15-SIM     | ND         |              | 1   |
| oluene                        |           | 1.5          | ug/m3   | 0.10         | 0.0062     | EPA-TO-15-SIM     | ND         |              | 1   |
| 1,1,1-Trichloroethane         |           | ND           | ug/m3   | 0.10         | 0.0055     | EPA-TO-15-SIM     | ND         |              | 1   |
| ,1,2-Trichloroethane          |           | ND           | ug/m3   | 0.10         | 0.0055     | EPA-TO-15-SIM     | ND         |              | 1   |
| richloroethene                |           | ND           | ug/m3   | 0.10         | 0.0095     | EPA-TO-15-SIM     | ND         |              | 1   |
| Trichlorofluoromethane        |           | 1.3          | ug/m3   | 0.050        | 0.0057     | EPA-TO-15-SIM     | ND         |              | 1   |
| ,1,2-Trichloro-1,2,2-trifluor | oethane   | 0.60         | ug/m3   | 0.10         | 0.0078     | EPA-TO-15-SIM     | ND         |              | 1   |
| /inyl chloride                |           | ND           | ug/m3   | 0.020        | 0.0046     | EPA-TO-15-SIM     | ND         |              | 1   |
| o- & m-Xylenes                |           | 0.64         | ug/m3   | 0.050        | 0.0082     | EPA-TO-15-SIM     | ND         |              | 1   |
| o-Xylene                      |           | 0.21         | ug/m3   | 0.050        | 0.0044     | EPA-TO-15-SIM     | ND         |              | 1   |
| Total Xylenes                 |           | 0.86         | ug/m3   | 0.10         | 0.013      | EPA-TO-15-SIM     | ND         |              | 1   |
| I-Bromofluorobenzene (Surr    | ogate)    | 98.0         | %       | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM     |            |              | 1   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report apply to the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1001419017 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 04/26/2023 12:44 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: | 2307789-03    | Client Sam     | Client Sample Name: AA-710/10-20230418-0057, 4/18/2023 3:52:00AM, Client |         |            |          |          |           |
|----------------|---------------|----------------|--------------------------------------------------------------------------|---------|------------|----------|----------|-----------|
| DON            |               | Dury Data      | Run                                                                      | A       | I          |          | QC       |           |
| DCN            | Method        | Prep Date      | Date/Time                                                                | Analyst | Instrument | Dilution | Batch ID |           |
| 1              | EPA-TO-15-SIM | 04/19/23 13:39 | 04/20/23 14:46                                                           | BEP     | MS-A2      | 1        | B164497  | EPA TO-15 |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307789-03 | Client Sample Name: AA-710/10-20230418-0057, 4/18/2023 |       |     |     |            | 3:52:00AM, Client |              |     |  |
|----------------|------------|--------------------------------------------------------|-------|-----|-----|------------|-------------------|--------------|-----|--|
| Constituent    |            | Result                                                 | Units | PQL | MDL | Method     | MB<br>Bias        | Lab<br>Quals | DCN |  |
| Methane (CH4)  |            | 4.3                                                    | ppmv  | 2.0 | 1.8 | ASTM-D1946 | ND                |              | 1   |  |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/24/23 08:03 | 04/24/23 14:03 | RMK     | GC-A1      | 1        | B164745  | No Prep     |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307789-04             | Client Sampl | e Name: | AA-CT-20 | 230418-00 | 55, 4/18/2023 3: | 55:00AM, Cli | ent   |     |
|---------------------------------------|--------------|---------|----------|-----------|------------------|--------------|-------|-----|
| Constituent                           | Result       | Units   | PQL      | MDL       | Method           | MB           | Lab   | DCN |
| Acetone                               | 3.9          | ug/m3   | 1.0      | 0.0075    | EPA-TO-15-SIM    | Bias<br>ND   | Quals | 1   |
| Benzene                               | 0.39         | ug/m3   | 0.050    | 0.0032    | EPA-TO-15-SIM    | ND           |       | 1   |
| Benzyl chloride                       | ND           | ug/m3   | 0.50     | 0.0052    | EPA-TO-15-SIM    | ND           |       | 1   |
| Carbon tetrachloride                  | ND           | ug/m3   | 0.20     | 0.0063    | EPA-TO-15-SIM    | ND           |       | 1   |
| Chlorobenzene                         | ND           | ug/m3   | 0.10     | 0.0079    | EPA-TO-15-SIM    | ND           |       | 1   |
| Chloroform                            | ND           | ug/m3   | 0.050    | 0.0058    | EPA-TO-15-SIM    | ND           |       | 1   |
| 1,2-Dibromoethane                     | ND           | ug/m3   | 0.20     | 0.014     | EPA-TO-15-SIM    | ND           |       | 1   |
| 1,2-Dichlorobenzene                   | ND           | ug/m3   | 0.20     | 0.011     | EPA-TO-15-SIM    | ND           |       | 1   |
| 1,3-Dichlorobenzene                   | ND           | ug/m3   | 0.20     | 0.013     | EPA-TO-15-SIM    | ND           |       | 1   |
| 1,4-Dichlorobenzene                   | ND           | ug/m3   | 0.20     | 0.016     | EPA-TO-15-SIM    | ND           |       | 1   |
| Dichlorodifluoromethane               | 2.1          | ug/m3   | 0.050    | 0.0052    | EPA-TO-15-SIM    | ND           |       | 1   |
| 1,1-Dichloroethane                    | ND           | ug/m3   | 0.050    | 0.0041    | EPA-TO-15-SIM    | ND           |       | 1   |
| 1,2-Dichloroethane                    | ND           | ug/m3   | 0.10     | 0.0046    | EPA-TO-15-SIM    | ND           |       | 1   |
| 1,1-Dichloroethene                    | ND           | ug/m3   | 0.050    | 0.0078    | EPA-TO-15-SIM    | ND           |       | 1   |
| cis-1,2-Dichloroethene                | ND           | ug/m3   | 0.050    | 0.0044    | EPA-TO-15-SIM    | ND           |       | 1   |
| trans-1,2-Dichloroethene              | ND           | ug/m3   | 0.050    | 0.0075    | EPA-TO-15-SIM    | ND           |       | 1   |
| trans-1,3-Dichloropropene             | ND           | ug/m3   | 0.050    | 0.013     | EPA-TO-15-SIM    | ND           |       | 1   |
| 1,1-Difluoroethane                    | 0.66         | ug/m3   | 5.0      | 0.0027    | EPA-TO-15-SIM    | ND           | J     | 1   |
| Ethylbenzene                          | 0.14         | ug/m3   | 0.050    | 0.017     | EPA-TO-15-SIM    | ND           |       | 1   |
| Methylene chloride                    | ND           | ug/m3   | 0.20     | 0.0077    | EPA-TO-15-SIM    | ND           |       | 1   |
| Tetrachloroethene                     | ND           | ug/m3   | 0.10     | 0.011     | EPA-TO-15-SIM    | ND           |       | 1   |
| Toluene                               | 1.5          | ug/m3   | 0.10     | 0.0062    | EPA-TO-15-SIM    | ND           |       | 1   |
| 1,1,1-Trichloroethane                 | ND           | ug/m3   | 0.10     | 0.0055    | EPA-TO-15-SIM    | ND           |       | 1   |
| 1,1,2-Trichloroethane                 | ND           | ug/m3   | 0.10     | 0.0055    | EPA-TO-15-SIM    | ND           |       | 1   |
| Trichloroethene                       | ND           | ug/m3   | 0.10     | 0.0095    | EPA-TO-15-SIM    | ND           |       | 1   |
| Trichlorofluoromethane                | 1.3          | ug/m3   | 0.050    | 0.0057    | EPA-TO-15-SIM    | ND           |       | 1   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.61         | ug/m3   | 0.10     | 0.0078    | EPA-TO-15-SIM    | ND           |       | 1   |
| Vinyl chloride                        | ND           | ug/m3   | 0.020    | 0.0046    | EPA-TO-15-SIM    | ND           |       | 1   |
| p- & m-Xylenes                        | 0.53         | ug/m3   | 0.050    | 0.0082    | EPA-TO-15-SIM    | ND           |       | 1   |
| o-Xylene                              | 0.16         | ug/m3   | 0.050    | 0.0044    | EPA-TO-15-SIM    | ND           |       | 1   |
| Total Xylenes                         | 0.69         | ug/m3   | 0.10     | 0.013     | EPA-TO-15-SIM    | ND           |       | 1   |
|                                       |              |         |          |           |                  |              |       |     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report apply to the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 04/26/2023 12:44 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | : 2307789-04  | Client San     | nple Name:     |         |            |          |          |           |
|---------------|---------------|----------------|----------------|---------|------------|----------|----------|-----------|
|               |               |                | Run            |         |            |          | QC       |           |
| DCN           | Method        | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID |           |
| 1             | EPA-TO-15-SIM | 04/19/23 13:39 | 04/20/23 15:29 | ) BEP   | MS-A2      | 1        | B164497  | EPA TO-15 |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307789-04 | Client Sample Name: AA-CT-20230418-0055, 4/18/2023 3 |       |     |     | 3:55:00AM, Cli | ent        |              |     |
|----------------|------------|------------------------------------------------------|-------|-----|-----|----------------|------------|--------------|-----|
| Constituent    |            | Result                                               | Units | PQL | MDL | Method         | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 5.0                                                  | ppmv  | 2.0 | 1.8 | ASTM-D1946     | ND         |              | 1   |

|     |            |                | Run            |         |            |          | QC       |             |  |  |  |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|--|--|--|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |  |  |  |
| 1   | ASTM-D1946 | 04/24/23 08:03 | 04/24/23 14:23 | RMK     | GC-A1      | 1        | B164745  | No Prep     |  |  |  |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307789-0              | 05 Client Sampl | e Name: | AA-710/1     | 0-20230418 | 3-0057-D, 4/18/20 | 23 3:52:00 | AM, Client   |     |
|---------------------------------------|-----------------|---------|--------------|------------|-------------------|------------|--------------|-----|
| Constituent                           | Result          | Units   | PQL          | MDL        | Method            | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                               | 5.6             | ug/m3   | 1.0          | 0.0075     | EPA-TO-15-SIM     | ND         | Quais        | 1   |
| Benzene                               | 0.47            | ug/m3   | 0.050        | 0.0032     | EPA-TO-15-SIM     | ND         |              | 1   |
| Benzyl chloride                       | ND              | ug/m3   | 0.50         | 0.0052     | EPA-TO-15-SIM     | ND         |              | 1   |
| Carbon tetrachloride                  | ND              | ug/m3   | 0.20         | 0.0063     | EPA-TO-15-SIM     | ND         |              | 1   |
| Chlorobenzene                         | ND              | ug/m3   | 0.10         | 0.0079     | EPA-TO-15-SIM     | ND         |              | 1   |
| Chloroform                            | ND              | ug/m3   | 0.050        | 0.0058     | EPA-TO-15-SIM     | ND         |              | 1   |
| 1,2-Dibromoethane                     | ND              | ug/m3   | 0.20         | 0.014      | EPA-TO-15-SIM     | ND         |              | 1   |
| 1,2-Dichlorobenzene                   | ND              | ug/m3   | 0.20         | 0.011      | EPA-TO-15-SIM     | ND         |              | 1   |
| 1,3-Dichlorobenzene                   | ND              | ug/m3   | 0.20         | 0.013      | EPA-TO-15-SIM     | ND         |              | 1   |
| 1,4-Dichlorobenzene                   | ND              | ug/m3   | 0.20         | 0.016      | EPA-TO-15-SIM     | ND         |              | 1   |
| Dichlorodifluoromethane               | 2.2             | ug/m3   | 0.050        | 0.0052     | EPA-TO-15-SIM     | ND         |              | 1   |
| 1,1-Dichloroethane                    | ND              | ug/m3   | 0.050        | 0.0041     | EPA-TO-15-SIM     | ND         |              | 1   |
| 1,2-Dichloroethane                    | ND              | ug/m3   | 0.10         | 0.0046     | EPA-TO-15-SIM     | ND         |              | 1   |
| 1,1-Dichloroethene                    | ND              | ug/m3   | 0.050        | 0.0078     | EPA-TO-15-SIM     | ND         |              | 1   |
| cis-1,2-Dichloroethene                | ND              | ug/m3   | 0.050        | 0.0044     | EPA-TO-15-SIM     | ND         |              | 1   |
| trans-1,2-Dichloroethene              | ND              | ug/m3   | 0.050        | 0.0075     | EPA-TO-15-SIM     | ND         |              | 1   |
| trans-1,3-Dichloropropene             | ND              | ug/m3   | 0.050        | 0.013      | EPA-TO-15-SIM     | ND         |              | 1   |
| 1,1-Difluoroethane                    | 0.66            | ug/m3   | 5.0          | 0.0027     | EPA-TO-15-SIM     | ND         | J            | 1   |
| Ethylbenzene                          | 0.17            | ug/m3   | 0.050        | 0.017      | EPA-TO-15-SIM     | ND         |              | 1   |
| Methylene chloride                    | ND              | ug/m3   | 0.20         | 0.0077     | EPA-TO-15-SIM     | ND         |              | 1   |
| Tetrachloroethene                     | ND              | ug/m3   | 0.10         | 0.011      | EPA-TO-15-SIM     | ND         |              | 1   |
| Toluene                               | 1.5             | ug/m3   | 0.10         | 0.0062     | EPA-TO-15-SIM     | ND         |              | 1   |
| 1,1,1-Trichloroethane                 | ND              | ug/m3   | 0.10         | 0.0055     | EPA-TO-15-SIM     | ND         |              | 1   |
| 1,1,2-Trichloroethane                 | ND              | ug/m3   | 0.10         | 0.0055     | EPA-TO-15-SIM     | ND         |              | 1   |
| Trichloroethene                       | ND              | ug/m3   | 0.10         | 0.0095     | EPA-TO-15-SIM     | ND         |              | 1   |
| Trichlorofluoromethane                | 1.3             | ug/m3   | 0.050        | 0.0057     | EPA-TO-15-SIM     | ND         |              | 1   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.60            | ug/m3   | 0.10         | 0.0078     | EPA-TO-15-SIM     | ND         |              | 1   |
| Vinyl chloride                        | ND              | ug/m3   | 0.020        | 0.0046     | EPA-TO-15-SIM     | ND         |              | 1   |
| p- & m-Xylenes                        | 0.68            | ug/m3   | 0.050        | 0.0082     | EPA-TO-15-SIM     | ND         |              | 1   |
| o-Xylene                              | 0.21            | ug/m3   | 0.050        | 0.0044     | EPA-TO-15-SIM     | ND         |              | 1   |
| Total Xylenes                         | 0.89            | ug/m3   | 0.10         | 0.013      | EPA-TO-15-SIM     | ND         |              | 1   |
| 4-Bromofluorobenzene (Surrogate)      | 101             | %       | 50 - 150 (LC | CL - UCL)  | EPA-TO-15-SIM     |            |              | 1   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report apply to the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 04/26/2023 12:44 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: | 2307789-05    | Client San     | Client Sample Name: AA-710/10-20230418-0057-D, 4/18/2023 3:52:00AM, Client |         |            |          |          |           |  |
|----------------|---------------|----------------|----------------------------------------------------------------------------|---------|------------|----------|----------|-----------|--|
| DON            |               |                | Run                                                                        | Aughert | 1          | Dilation | QC       |           |  |
| DCN            | Method        | Prep Date      | Date/Time                                                                  | Analyst | Instrument | Dilution | Batch ID |           |  |
| 1              | EPA-TO-15-SIM | 04/19/23 13:39 | 04/20/23 16:12                                                             | BEP     | MS-A2      | 1        | B164497  | EPA TO-15 |  |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307789-05 | Client Sampl | Client Sample Name: AA-710/10-20230418-0057-D, |     |     |            | 4/18/2023 3:52:00AM, Client |              |     |  |  |
|----------------|------------|--------------|------------------------------------------------|-----|-----|------------|-----------------------------|--------------|-----|--|--|
| Constituent    |            | Result       | Units                                          | PQL | MDL | Method     | MB<br>Bias                  | Lab<br>Quals | DCN |  |  |
| Methane (CH4)  |            | 67           | ppmv                                           | 2.0 | 1.8 | ASTM-D1946 | ND                          |              | 1   |  |  |

| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| 1   | ASTM-D1946 | 04/24/23 08:03 | 04/24/23 15:19 | RMK     | GC-A1      | 1        | B164745  | No Prep     |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23              | 07789-06 | Client Sampl | e Name: | AA-710-2     | AA-710-20230418-0707, 4/18/2023 10:17:00AM, Client |               |            |              |     |  |  |
|--------------------------------|----------|--------------|---------|--------------|----------------------------------------------------|---------------|------------|--------------|-----|--|--|
| Constituent                    |          | Result       | Units   | PQL          | MDL                                                | Method        | MB<br>Bias | Lab<br>Quals | DCN |  |  |
| Acetone                        |          | 4.8          | ug/m3   | 10           | 0.075                                              | EPA-TO-15-SIM | ND         | J,A01        | 1   |  |  |
| Benzene                        |          | 0.96         | ug/m3   | 0.050        | 0.0032                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Benzyl chloride                |          | ND           | ug/m3   | 0.50         | 0.0052                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Carbon tetrachloride           |          | ND           | ug/m3   | 0.20         | 0.0063                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Chlorobenzene                  |          | ND           | ug/m3   | 0.10         | 0.0079                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Chloroform                     |          | ND           | ug/m3   | 0.050        | 0.0058                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| ,2-Dibromoethane               |          | ND           | ug/m3   | 0.20         | 0.014                                              | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| ,2-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.011                                              | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| ,3-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.013                                              | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| ,4-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.016                                              | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| ichlorodifluoromethane         |          | 2.2          | ug/m3   | 0.050        | 0.0052                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| ,1-Dichloroethane              |          | ND           | ug/m3   | 0.050        | 0.0041                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| ,2-Dichloroethane              |          | ND           | ug/m3   | 0.10         | 0.0046                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| ,1-Dichloroethene              |          | ND           | ug/m3   | 0.050        | 0.0078                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| is-1,2-Dichloroethene          |          | ND           | ug/m3   | 0.050        | 0.0044                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| ans-1,2-Dichloroethene         |          | ND           | ug/m3   | 0.050        | 0.0075                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| ans-1,3-Dichloropropene        |          | ND           | ug/m3   | 0.050        | 0.013                                              | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| ,1-Difluoroethane              |          | ND           | ug/m3   | 5.0          | 0.0027                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| thylbenzene                    |          | 0.48         | ug/m3   | 0.050        | 0.017                                              | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| lethylene chloride             |          | ND           | ug/m3   | 0.20         | 0.0077                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| etrachloroethene               |          | ND           | ug/m3   | 0.10         | 0.011                                              | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| oluene                         |          | 3.2          | ug/m3   | 1.0          | 0.062                                              | EPA-TO-15-SIM | ND         | A01          | 1   |  |  |
| ,1,1-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| ,1,2-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| richloroethene                 |          | ND           | ug/m3   | 0.10         | 0.0095                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| richlorofluoromethane          |          | 1.3          | ug/m3   | 0.050        | 0.0057                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| ,1,2-Trichloro-1,2,2-trifluoro | pethane  | 0.60         | ug/m3   | 0.10         | 0.0078                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| inyl chloride                  |          | ND           | ug/m3   | 0.020        | 0.0046                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| - & m-Xylenes                  |          | 1.8          | ug/m3   | 0.050        | 0.0082                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| -Xylene                        |          | 0.65         | ug/m3   | 0.050        | 0.0044                                             | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| otal Xylenes                   |          | 2.4          | ug/m3   | 0.10         | 0.013                                              | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| -Bromofluorobenzene (Surro     | ogate)   | 101          | %       | 50 - 150 (LC | L - UCL)                                           | EPA-TO-15-SIM |            |              | 1   |  |  |
| -Bromofluorobenzene (Surro     | ogate)   | 98.0         | %       | 50 - 150 (LC | L - UCL)                                           | EPA-TO-15-SIM |            |              | 2   |  |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 14100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001419017



Reported: 04/26/2023 12:44 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample I | <b>D:</b> 2307789-06 | Client San     | nple Name:     | AA-710-20230 | 10-20230418-0707, 4/18/2023 10:17:00AM, Client |          |          |           |  |  |
|--------------|----------------------|----------------|----------------|--------------|------------------------------------------------|----------|----------|-----------|--|--|
|              |                      |                | Run            |              |                                                |          | QC       |           |  |  |
| DCN          | Method               | Prep Date      | Date/Time      | Analyst      | Instrument                                     | Dilution | Batch ID |           |  |  |
| 1            | EPA-TO-15-SIM        | 04/19/23 13:39 | 04/20/23 22:03 | BEP          | MS-A2                                          | 10       | B164497  | EPA TO-15 |  |  |
| 2            | EPA-TO-15-SIM        | 04/19/23 13:39 | 04/20/23 16:57 | BEP          | MS-A2                                          | 1        | B164497  | EPA TO-15 |  |  |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307789-06 | Client Sampl | e Name: | AA-710-20230418-0707, 4/18/2023 10:17:00AM, Client |     |            |            |              |     |
|----------------|------------|--------------|---------|----------------------------------------------------|-----|------------|------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL                                                | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 2.1          | ppmv    | 2.0                                                | 1.8 | ASTM-D1946 | ND         |              | 1   |

| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| 1   | ASTM-D1946 | 04/24/23 08:03 | 04/24/23 15:39 | RMK     | GC-A1      | 1        | B164745  | No Prep     |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23               | 07789-07 | Client Sampl | e Name: | AA-10-20     | 230418-07 | 04, 4/18/2023 10: | 04:00AM, CI | 0AM, Client    |          |  |
|---------------------------------|----------|--------------|---------|--------------|-----------|-------------------|-------------|----------------|----------|--|
| Constituent                     |          | Result       | Units   | PQL          | MDL       | Method            | MB<br>Bias  | Lab            | DCN      |  |
| Acetone                         |          | 5.5          | ug/m3   | 10           | 0.075     | EPA-TO-15-SIM     | ND          | Quals<br>J,A01 | <u> </u> |  |
| Benzene                         |          | 1.1          | ug/m3   | 0.050        | 0.0032    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| Benzyl chloride                 |          | ND           | ug/m3   | 0.50         | 0.0052    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| Carbon tetrachloride            |          | ND           | ug/m3   | 0.20         | 0.0063    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| Chlorobenzene                   |          | ND           | ug/m3   | 0.10         | 0.0079    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| Chloroform                      |          | ND           | ug/m3   | 0.050        | 0.0058    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| 1,2-Dibromoethane               |          | ND           | ug/m3   | 0.20         | 0.014     | EPA-TO-15-SIM     | ND          |                | 2        |  |
| 1,2-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.011     | EPA-TO-15-SIM     | ND          |                | 2        |  |
| 1,3-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.013     | EPA-TO-15-SIM     | ND          |                | 2        |  |
| 1,4-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.016     | EPA-TO-15-SIM     | ND          |                | 2        |  |
| Dichlorodifluoromethane         |          | 2.1          | ug/m3   | 0.050        | 0.0052    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| I,1-Dichloroethane              |          | ND           | ug/m3   | 0.050        | 0.0041    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| 1,2-Dichloroethane              |          | ND           | ug/m3   | 0.10         | 0.0046    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| I,1-Dichloroethene              |          | ND           | ug/m3   | 0.050        | 0.0078    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| cis-1,2-Dichloroethene          |          | ND           | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| rans-1,2-Dichloroethene         |          | ND           | ug/m3   | 0.050        | 0.0075    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| rans-1,3-Dichloropropene        |          | ND           | ug/m3   | 0.050        | 0.013     | EPA-TO-15-SIM     | ND          |                | 2        |  |
| 1,1-Difluoroethane              |          | 0.55         | ug/m3   | 5.0          | 0.0027    | EPA-TO-15-SIM     | ND          | J              | 2        |  |
| Ethylbenzene                    |          | 0.62         | ug/m3   | 0.050        | 0.017     | EPA-TO-15-SIM     | ND          |                | 2        |  |
| Methylene chloride              |          | ND           | ug/m3   | 0.20         | 0.0077    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| Tetrachloroethene               |          | ND           | ug/m3   | 0.10         | 0.011     | EPA-TO-15-SIM     | ND          |                | 2        |  |
| Foluene                         |          | 3.5          | ug/m3   | 1.0          | 0.062     | EPA-TO-15-SIM     | ND          | A01            | 1        |  |
| 1,1,1-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| 1,1,2-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| Trichloroethene                 |          | ND           | ug/m3   | 0.10         | 0.0095    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| Trichlorofluoromethane          |          | 1.3          | ug/m3   | 0.050        | 0.0057    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| 1,1,2-Trichloro-1,2,2-trifluoro | ethane   | 0.60         | ug/m3   | 0.10         | 0.0078    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| /inyl chloride                  |          | ND           | ug/m3   | 0.020        | 0.0046    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| o- & m-Xylenes                  |          | 2.3          | ug/m3   | 0.050        | 0.0082    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| o-Xylene                        |          | 0.87         | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM     | ND          |                | 2        |  |
| Fotal Xylenes                   |          | 3.2          | ug/m3   | 0.10         | 0.013     | EPA-TO-15-SIM     | ND          |                | 2        |  |
| 4-Bromofluorobenzene (Surro     | ogate)   | 80.7         | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM     |             |                | 1        |  |
| 4-Bromofluorobenzene (Surro     | ogate)   | 105          | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM     |             |                | 2        |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 14100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001419017



Reported: 04/26/2023 12:44 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307789-07 Client Sa |               |                | nple Name:     | AA-10-202304 | 118-0704, 4/18/2 | 2023 10:04:0 | 0AM, Client |           |
|-------------------------------------|---------------|----------------|----------------|--------------|------------------|--------------|-------------|-----------|
|                                     |               | -              | Run            |              |                  |              | QC          |           |
| DCN                                 | Method        | Prep Date      | Date/Time      | Analyst      | Instrument       | Dilution     | Batch ID    |           |
| 1                                   | EPA-TO-15-SIM | 04/19/23 13:39 | 04/20/23 22:42 | BEP          | MS-A2            | 10           | B164497     | EPA TO-15 |
| 2                                   | EPA-TO-15-SIM | 04/19/23 13:39 | 04/20/23 17:41 | BEP          | MS-A2            | 1            | B164497     | EPA TO-15 |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307789-07 | Client Sampl | e Name: | AA-10-20230418-0704, 4/18/2023 10:04:00AM, Client |     |            |            |              |     |
|----------------|------------|--------------|---------|---------------------------------------------------|-----|------------|------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL                                               | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 4.7          | ppmv    | 2.0                                               | 1.8 | ASTM-D1946 | ND         |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/24/23 08:03 | 04/24/23 16:00 | RMK     | GC-A1      | 1        | B164745  | No Prep     |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307789                | -08 Client Sampl | e Name: | AA-710/1     | 0-20230418 | 3-0656, 4/18/2023 | 0656, 4/18/2023 10:06:00AM, Client |              |     |  |  |  |
|---------------------------------------|------------------|---------|--------------|------------|-------------------|------------------------------------|--------------|-----|--|--|--|
| Constituent                           | Result           | Units   | PQL          | MDL        | Method            | MB<br>Bias                         | Lab<br>Quals | DCN |  |  |  |
| Acetone                               | 4.9              | ug/m3   | 10           | 0.075      | EPA-TO-15-SIM     | ND                                 | J,A01        | 1   |  |  |  |
| Benzene                               | 1.2              | ug/m3   | 0.050        | 0.0032     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| Benzyl chloride                       | ND               | ug/m3   | 0.50         | 0.0052     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| Carbon tetrachloride                  | ND               | ug/m3   | 0.20         | 0.0063     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| Chlorobenzene                         | ND               | ug/m3   | 0.10         | 0.0079     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| Chloroform                            | ND               | ug/m3   | 0.050        | 0.0058     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| 1,2-Dibromoethane                     | ND               | ug/m3   | 0.20         | 0.014      | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| 1,2-Dichlorobenzene                   | ND               | ug/m3   | 0.20         | 0.011      | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| 1,3-Dichlorobenzene                   | ND               | ug/m3   | 0.20         | 0.013      | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| I,4-Dichlorobenzene                   | ND               | ug/m3   | 0.20         | 0.016      | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| Dichlorodifluoromethane               | 2.2              | ug/m3   | 0.050        | 0.0052     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| I,1-Dichloroethane                    | ND               | ug/m3   | 0.050        | 0.0041     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| ,2-Dichloroethane                     | ND               | ug/m3   | 0.10         | 0.0046     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| ,1-Dichloroethene                     | ND               | ug/m3   | 0.050        | 0.0078     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| sis-1,2-Dichloroethene                | ND               | ug/m3   | 0.050        | 0.0044     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| rans-1,2-Dichloroethene               | ND               | ug/m3   | 0.050        | 0.0075     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| rans-1,3-Dichloropropene              | ND               | ug/m3   | 0.050        | 0.013      | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| I,1-Difluoroethane                    | 0.52             | ug/m3   | 5.0          | 0.0027     | EPA-TO-15-SIM     | ND                                 | J            | 2   |  |  |  |
| Ethylbenzene                          | 0.66             | ug/m3   | 0.050        | 0.017      | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| Methylene chloride                    | ND               | ug/m3   | 0.20         | 0.0077     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| etrachloroethene                      | ND               | ug/m3   | 0.10         | 0.011      | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| oluene                                | 3.3              | ug/m3   | 1.0          | 0.062      | EPA-TO-15-SIM     | ND                                 | A01          | 1   |  |  |  |
| 1,1,1-Trichloroethane                 | ND               | ug/m3   | 0.10         | 0.0055     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| 1,1,2-Trichloroethane                 | ND               | ug/m3   | 0.10         | 0.0055     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| richloroethene                        | ND               | ug/m3   | 0.10         | 0.0095     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| Frichlorofluoromethane                | 1.3              | ug/m3   | 0.050        | 0.0057     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | e 0.59           | ug/m3   | 0.10         | 0.0078     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| /inyl chloride                        | ND               | ug/m3   | 0.020        | 0.0046     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| o- & m-Xylenes                        | 2.5              | ug/m3   | 0.050        | 0.0082     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| o-Xylene                              | 0.95             | ug/m3   | 0.050        | 0.0044     | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| otal Xylenes                          | 3.4              | ug/m3   | 0.10         | 0.013      | EPA-TO-15-SIM     | ND                                 |              | 2   |  |  |  |
| 4-Bromofluorobenzene (Surrogate)      | 88.5             | %       | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM     |                                    |              | 1   |  |  |  |
| I-Bromofluorobenzene (Surrogate)      | 108              | %       | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM     |                                    |              | 2   |  |  |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 14100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001419017



Reported: 04/26/2023 12:44 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sampl | e ID: 2307789-08 | Client San     | nple Name:     | AA-710/10-20 | 230418-0656, 4 | /18/2023 10: | :06:00AM, CI | lient     |
|-----------|------------------|----------------|----------------|--------------|----------------|--------------|--------------|-----------|
|           |                  |                | Run            |              |                |              | QC           |           |
| DCN       | Method           | Prep Date      | Date/Time      | Analyst      | Instrument     | Dilution     | Batch ID     |           |
| 1         | EPA-TO-15-SIM    | 04/19/23 13:39 | 04/20/23 23:19 | BEP          | MS-A2          | 10           | B164497      | EPA TO-15 |
| 2         | EPA-TO-15-SIM    | 04/19/23 13:39 | 04/20/23 18:24 | BEP          | MS-A2          | 1            | B164497      | EPA TO-15 |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID:           | 2307789-08 | Client Sampl | e Name: | AA-710/10 | 0-2023041 | 8-0656, 4/18/2023 | 3 10:06:00AN |              |     |
|--------------------------|------------|--------------|---------|-----------|-----------|-------------------|--------------|--------------|-----|
| Constituent Result Units |            |              |         |           | MDL       | Method            | MB<br>Bias   | Lab<br>Quals | DCN |
| Methane (CH4)            |            | 6.1          | ppmv    | 2.0       | 1.8       | ASTM-D1946        | ND           |              | 1   |

|     |            |                | Run            |         |            |          | QC       |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/24/23 08:03 | 04/24/23 17:00 | RMK     | GC-A1      | 1        | B164745  | No Prep     |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2307789-09             | 9 Client Sampl | e Name: | AA-CT-20     | 230418-06 | 55, 4/18/2023 9: | 55:00AM, Cli | ent          |     |
|---------------------------------------|----------------|---------|--------------|-----------|------------------|--------------|--------------|-----|
| Constituent                           | Result         | Units   | PQL          | MDL       | Method           | MB<br>Bias   | Lab<br>Quals | DCN |
| Acetone                               | 8.9            | ug/m3   | 10           | 0.075     | EPA-TO-15-SIM    | ND           | J,A01        | 1   |
| Benzene                               | 0.65           | ug/m3   | 0.050        | 0.0032    | EPA-TO-15-SIM    | ND           |              | 2   |
| Benzyl chloride                       | ND             | ug/m3   | 0.50         | 0.0052    | EPA-TO-15-SIM    | ND           |              | 2   |
| Carbon tetrachloride                  | ND             | ug/m3   | 0.20         | 0.0063    | EPA-TO-15-SIM    | ND           |              | 2   |
| Chlorobenzene                         | ND             | ug/m3   | 0.10         | 0.0079    | EPA-TO-15-SIM    | ND           |              | 2   |
| Chloroform                            | ND             | ug/m3   | 0.050        | 0.0058    | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,2-Dibromoethane                     | ND             | ug/m3   | 0.20         | 0.014     | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,2-Dichlorobenzene                   | ND             | ug/m3   | 0.20         | 0.011     | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,3-Dichlorobenzene                   | ND             | ug/m3   | 0.20         | 0.013     | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,4-Dichlorobenzene                   | ND             | ug/m3   | 0.20         | 0.016     | EPA-TO-15-SIM    | ND           |              | 2   |
| Dichlorodifluoromethane               | 2.1            | ug/m3   | 0.050        | 0.0052    | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,1-Dichloroethane                    | ND             | ug/m3   | 0.050        | 0.0041    | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,2-Dichloroethane                    | ND             | ug/m3   | 0.10         | 0.0046    | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,1-Dichloroethene                    | ND             | ug/m3   | 0.050        | 0.0078    | EPA-TO-15-SIM    | ND           |              | 2   |
| cis-1,2-Dichloroethene                | ND             | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM    | ND           |              | 2   |
| trans-1,2-Dichloroethene              | ND             | ug/m3   | 0.050        | 0.0075    | EPA-TO-15-SIM    | ND           |              | 2   |
| trans-1,3-Dichloropropene             | ND             | ug/m3   | 0.050        | 0.013     | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,1-Difluoroethane                    | 1.0            | ug/m3   | 5.0          | 0.0027    | EPA-TO-15-SIM    | ND           | J            | 2   |
| Ethylbenzene                          | 0.41           | ug/m3   | 0.050        | 0.017     | EPA-TO-15-SIM    | ND           |              | 2   |
| Methylene chloride                    | 8.3            | ug/m3   | 2.0          | 0.077     | EPA-TO-15-SIM    | ND           | A01          | 1   |
| Tetrachloroethene                     | ND             | ug/m3   | 0.10         | 0.011     | EPA-TO-15-SIM    | ND           |              | 2   |
| Foluene                               | 2.8            | ug/m3   | 1.0          | 0.062     | EPA-TO-15-SIM    | ND           | A01          | 1   |
| 1,1,1-Trichloroethane                 | ND             | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,1,2-Trichloroethane                 | ND             | ug/m3   | 0.10         | 0.0055    | EPA-TO-15-SIM    | ND           |              | 2   |
| Trichloroethene                       | ND             | ug/m3   | 0.10         | 0.0095    | EPA-TO-15-SIM    | ND           |              | 2   |
| Trichlorofluoromethane                | 1.3            | ug/m3   | 0.050        | 0.0057    | EPA-TO-15-SIM    | ND           |              | 2   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.64           | ug/m3   | 0.10         | 0.0078    | EPA-TO-15-SIM    | ND           |              | 2   |
| Vinyl chloride                        | ND             | ug/m3   | 0.020        | 0.0046    | EPA-TO-15-SIM    | ND           |              | 2   |
| p- & m-Xylenes                        | 1.6            | ug/m3   | 0.050        | 0.0082    | EPA-TO-15-SIM    | ND           |              | 2   |
| o-Xylene                              | 0.55           | ug/m3   | 0.050        | 0.0044    | EPA-TO-15-SIM    | ND           |              | 2   |
| Total Xylenes                         | 2.1            | ug/m3   | 0.10         | 0.013     | EPA-TO-15-SIM    | ND           |              | 2   |
| 4-Bromofluorobenzene (Surrogate)      | 89.1           | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM    |              |              | 1   |
| 4-Bromofluorobenzene (Surrogate)      | 111            | %       | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM    |              |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1001419017 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 04/26/2023 12:44 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: | 2307789-09    | Client Sam     | ple Name:      | AA-CT-202304 | 418-0655, 4/18/2 | 2023 9:55:0 | 0AM, Client |           |
|----------------|---------------|----------------|----------------|--------------|------------------|-------------|-------------|-----------|
|                |               | -              | Run            |              |                  |             | QC          |           |
| DCN            | Method        | Prep Date      | Date/Time      | Analyst      | Instrument       | Dilution    | Batch ID    |           |
| 1              | EPA-TO-15-SIM | 04/19/23 13:39 | 04/20/23 23:56 | BEP          | MS-A2            | 10          | B164497     | EPA TO-15 |
| 2              | EPA-TO-15-SIM | 04/19/23 13:39 | 04/20/23 19:07 | BEP          | MS-A2            | 1           | B164497     | EPA TO-15 |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2307789-09 | Client Sampl | e Name: | AA-CT-20 | 230418-06 | 55, 4/18/2023 | 9:55:00AM, Cli | ent          |     |
|----------------|------------|--------------|---------|----------|-----------|---------------|----------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL       | Method        | MB<br>Bias     | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 21           | ppmv    | 2.0      | 1.8       | ASTM-D1946    | ND             |              | 1   |

|     |            |                | Run            |         |            |          | QC       |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 04/24/23 08:03 | 04/24/23 17:20 | RMK     | GC-A1      | 1        | B164745  | No Prep     |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

### **Quality Control Report - Method Blank Analysis**

| Constituent                           | QC Sample ID | MB Result | Units | PQL     | MDL           | Lab Quals | Run # |
|---------------------------------------|--------------|-----------|-------|---------|---------------|-----------|-------|
| QC Batch ID: B164497                  |              |           |       |         |               |           |       |
| Acetone                               | B164497-BLK1 | ND        | ug/m3 | 1.0     | 0.0075        |           | 1     |
| Benzene                               | B164497-BLK1 | ND        | ug/m3 | 0.050   | 0.0032        |           | 1     |
| Benzyl chloride                       | B164497-BLK1 | ND        | ug/m3 | 0.50    | 0.0052        |           | 1     |
| Carbon tetrachloride                  | B164497-BLK1 | ND        | ug/m3 | 0.20    | 0.0063        |           | 1     |
| Chlorobenzene                         | B164497-BLK1 | ND        | ug/m3 | 0.10    | 0.0079        |           | 1     |
| Chloroform                            | B164497-BLK1 | ND        | ug/m3 | 0.050   | 0.0058        |           | 1     |
| 1,2-Dibromoethane                     | B164497-BLK1 | ND        | ug/m3 | 0.20    | 0.014         |           | 1     |
| 1,2-Dichlorobenzene                   | B164497-BLK1 | ND        | ug/m3 | 0.20    | 0.011         |           | 1     |
| 1,3-Dichlorobenzene                   | B164497-BLK1 | ND        | ug/m3 | 0.20    | 0.013         |           | 1     |
| 1,4-Dichlorobenzene                   | B164497-BLK1 | ND        | ug/m3 | 0.20    | 0.016         |           | 1     |
| Dichlorodifluoromethane               | B164497-BLK1 | ND        | ug/m3 | 0.050   | 0.0052        |           | 1     |
| 1,1-Dichloroethane                    | B164497-BLK1 | ND        | ug/m3 | 0.050   | 0.0041        |           | 1     |
| 1,2-Dichloroethane                    | B164497-BLK1 | ND        | ug/m3 | 0.10    | 0.0046        |           | 1     |
| 1,1-Dichloroethene                    | B164497-BLK1 | ND        | ug/m3 | 0.050   | 0.0078        |           | 1     |
| cis-1,2-Dichloroethene                | B164497-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 1     |
| trans-1,2-Dichloroethene              | B164497-BLK1 | ND        | ug/m3 | 0.050   | 0.0075        |           | 1     |
| trans-1,3-Dichloropropene             | B164497-BLK1 | ND        | ug/m3 | 0.050   | 0.013         |           | 1     |
| 1,1-Difluoroethane                    | B164497-BLK1 | ND        | ug/m3 | 5.0     | 0.0027        |           | 1     |
| Ethylbenzene                          | B164497-BLK1 | ND        | ug/m3 | 0.050   | 0.017         |           | 1     |
| Methylene chloride                    | B164497-BLK1 | ND        | ug/m3 | 0.20    | 0.0077        |           | 1     |
| Tetrachloroethene                     | B164497-BLK1 | ND        | ug/m3 | 0.10    | 0.011         |           | 1     |
| Toluene                               | B164497-BLK1 | ND        | ug/m3 | 0.10    | 0.0062        |           | 1     |
| 1,1,1-Trichloroethane                 | B164497-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 1     |
| 1,1,2-Trichloroethane                 | B164497-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 1     |
| Trichloroethene                       | B164497-BLK1 | ND        | ug/m3 | 0.10    | 0.0095        |           | 1     |
| Trichlorofluoromethane                | B164497-BLK1 | ND        | ug/m3 | 0.050   | 0.0057        |           | 1     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | B164497-BLK1 | ND        | ug/m3 | 0.10    | 0.0078        |           | 1     |
| Vinyl chloride                        | B164497-BLK1 | ND        | ug/m3 | 0.020   | 0.0046        |           | 1     |
| p- & m-Xylenes                        | B164497-BLK1 | ND        | ug/m3 | 0.050   | 0.0082        |           | 1     |
| o-Xylene                              | B164497-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 1     |
| Total Xylenes                         | B164497-BLK1 | ND        | ug/m3 | 0.10    | 0.013         |           | 1     |
| 4-Bromofluorobenzene (Surrogate)      | B164497-BLK1 | 67.5      | %     | 50 - 15 | 0 (LCL - UCL) |           | 1     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

1001419017 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

### **Quality Control Report - Method Blank Analysis**

|   |      |              |         |               |           | Run            |         |            |          |  |
|---|------|--------------|---------|---------------|-----------|----------------|---------|------------|----------|--|
| R | un # | QC Sample ID | QC Type | Method        | Prep Date | Date Time      | Analyst | Instrument | Dilution |  |
|   | 1    | B164497-BLK1 | PB      | EPA-TO-15-SIM | 04/19/23  | 04/20/23 01:55 | BEP     | MS-A2      | 1        |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

|                        |                 |             | •       |         |                |             | •   |                      |       |       |       |
|------------------------|-----------------|-------------|---------|---------|----------------|-------------|-----|----------------------|-------|-------|-------|
|                        |                 |             |         |         |                |             |     | Control I            | imits |       |       |
|                        |                 |             |         | Spike   |                | Percent     |     | Percent              |       | Lab   |       |
| Constituent            | QC Sample ID    | Туре        | Result  | Level   | Units          | Recovery    | RPD | Recovery             | RPD   | Quals | Run # |
| QC Batch ID: B164497   |                 |             |         |         |                |             |     |                      |       |       |       |
| Benzene                | <br>B164497-BS1 | LCS         | 0.29261 | 0.31948 | ug/m3          | 91.6        |     | 70 - 130             |       |       | 1     |
|                        | B164497-BSD1    | LCSD        | 0.28957 | 0.31948 | ug/m3          | 90.6        | 1.0 | 70 - 130             | 30    |       | 2     |
| Benzyl chloride        | B164497-BS1     | LCS         | 0.54604 | 0.51772 | -              | 105         |     | 70 - 130             |       |       | 1     |
| Benzyi chionde         | B164497-BSD1    | LCS         | 0.54664 | 0.51772 | ug/m3<br>ug/m3 | 99.6        | 5.7 | 70 - 130<br>70 - 130 | 30    |       | 2     |
|                        |                 |             |         |         | -              |             | 0.1 |                      | 00    |       |       |
| Carbon tetrachloride   | B164497-BS1     | LCS         | 0.59478 | 0.62913 | ug/m3          | 94.5        | 0.0 | 70 - 130             | 00    |       | 1     |
|                        | B164497-BSD1    | LCSD        | 0.59623 | 0.62913 | ug/m3          | 94.8        | 0.2 | 70 - 130             | 30    |       | 2     |
| Chlorobenzene          | B164497-BS1     | LCS         | 0.44958 | 0.46036 | ug/m3          | 97.7        |     | 70 - 130             |       |       | 1     |
|                        | B164497-BSD1    | LCSD        | 0.45561 | 0.46036 | ug/m3          | 99.0        | 1.3 | 70 - 130             | 30    |       | 2     |
| Chloroform             | B164497-BS1     | LCS         | 0.47229 | 0.48825 | ug/m3          | 96.7        |     | 70 - 130             |       |       | 1     |
|                        | B164497-BSD1    | LCSD        | 0.47531 | 0.48825 | ug/m3          | 97.4        | 0.6 | 70 - 130             | 30    |       | 2     |
| 1,2-Dibromoethane      | B164497-BS1     | LCS         | 0.76113 | 0.76835 | ug/m3          | 99.1        |     | 70 - 130             |       |       | 1     |
|                        | B164497-BSD1    | LCSD        | 0.77157 | 0.76835 | ug/m3          | 100         | 1.4 | 70 - 130             | 30    |       | 2     |
| 1,2-Dichlorobenzene    | B164497-BS1     | LCS         | 0.56787 | 0.60124 | ug/m3          | 94.4        |     | 70 - 130             |       |       | 1     |
| ·,                     | B164497-BSD1    | LCSD        | 0.57616 | 0.60124 | ug/m3          | 95.8        | 1.5 | 70 - 130             | 30    |       | 2     |
| 1,3-Dichlorobenzene    | B164497-BS1     |             | 0.58663 | 0.60124 | ug/m3          | 97.6        |     | 70 - 130             |       |       | 1     |
| 1,3-Dichlorobenzene    | B164497-BSD1    | LCS<br>LCSD | 0.61320 | 0.60124 | ug/m3<br>ug/m3 | 97.0<br>102 | 4.4 | 70 - 130<br>70 - 130 | 30    |       | 2     |
|                        |                 |             |         |         | -              |             |     |                      |       |       |       |
| 1,4-Dichlorobenzene    | B164497-BS1     | LCS         | 0.62727 | 0.60124 | ug/m3          | 104         | 0.5 | 70 - 130             | 00    |       | 1     |
|                        | B164497-BSD1    | LCSD        | 0.64981 | 0.60124 | ug/m3          | 108         | 3.5 | 70 - 130             | 30    |       | 2     |
| 1,1-Dichloroethane     | B164497-BS1     | LCS         | 0.38697 | 0.40474 | ug/m3          | 95.6        |     | 70 - 130             |       |       | 1     |
|                        | B164497-BSD1    | LCSD        | 0.38361 | 0.40474 | ug/m3          | 94.8        | 0.9 | 70 - 130             | 30    |       | 2     |
| 1,2-Dichloroethane     | B164497-BS1     | LCS         | 0.37880 | 0.40474 | ug/m3          | 93.6        |     | 70 - 130             |       |       | 1     |
|                        | B164497-BSD1    | LCSD        | 0.38005 | 0.40474 | ug/m3          | 93.9        | 0.3 | 70 - 130             | 30    |       | 2     |
| 1,1-Dichloroethene     | B164497-BS1     | LCS         | 0.36743 | 0.39649 | ug/m3          | 92.7        |     | 70 - 130             |       |       | 1     |
|                        | B164497-BSD1    | LCSD        | 0.36664 | 0.39649 | ug/m3          | 92.5        | 0.2 | 70 - 130             | 30    |       | 2     |
| cis-1,2-Dichloroethene | B164497-BS1     | LCS         | 0.37564 | 0.39649 | ug/m3          | 94.7        |     | 70 - 130             |       |       | 1     |
|                        | B164497-BSD1    | LCSD        | 0.36656 | 0.39649 | ug/m3          | 92.4        | 2.4 | 70 - 130             | 30    |       | 2     |
| Methylene chloride     | B164497-BS1     | LCS         | 0.34595 | 0.34737 | ug/m3          | 99.6        |     | 70 - 130             |       |       | 1     |
|                        | B164497-BSD1    | LCS         | 0.34395 | 0.34737 | ug/m3          | 99.0<br>101 | 1.7 | 70 - 130<br>70 - 130 | 30    |       | 2     |
|                        |                 |             |         |         | -              |             |     |                      |       |       |       |
| Tetrachloroethene      | B164497-BS1     | LCS         | 0.65723 | 0.67825 | ug/m3          | 96.9        | 1 1 | 70 - 130             | 20    |       | 1     |
|                        | B164497-BSD1    | LCSD        | 0.66638 | 0.67825 | ug/m3          | 98.2        | 1.4 | 70 - 130             | 30    |       | 2     |
| Toluene                | B164497-BS1     | LCS         | 0.35469 | 0.37684 | ug/m3          | 94.1        |     | 70 - 130             |       |       | 1     |
|                        | B164497-BSD1    | LCSD        | 0.35521 | 0.37684 | ug/m3          | 94.3        | 0.1 | 70 - 130             | 30    |       | 2     |
| 1,1,1-Trichloroethane  | B164497-BS1     | LCS         | 0.51861 | 0.54562 | ug/m3          | 95.0        |     | 70 - 130             |       |       | 1     |
|                        | B164497-BSD1    | LCSD        | 0.51817 | 0.54562 | ug/m3          | 95.0        | 0.1 | 70 - 130             | 30    |       | 2     |
| 1,1,2-Trichloroethane  | B164497-BS1     | LCS         | 0.53596 | 0.54562 | ug/m3          | 98.2        |     | 70 - 130             |       |       | 1     |
|                        | B164497-BSD1    | LCSD        | 0.54131 | 0.54562 | ug/m3          | 99.2        | 1.0 | 70 - 130             | 30    |       | 2     |
|                        |                 |             |         |         |                |             |     |                      |       |       |       |

### **Quality Control Report - Laboratory Control Sample**

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

|              |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Control Limits                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|              |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Percent                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| QC Sample ID | Туре                                                                                                                                                        | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Recovery                                                                                                                                                                                                                                                                                                                                                             | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Run #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|              |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| B164497-BS1  | LCS                                                                                                                                                         | 0.51636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.53737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 96.1                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| B164497-BSD1 | LCSD                                                                                                                                                        | 0.52002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.53737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 96.8                                                                                                                                                                                                                                                                                                                                                                 | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| B164497-BS1  | LCS                                                                                                                                                         | 0.22934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.25562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 89.7                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| B164497-BSD1 | LCSD                                                                                                                                                        | 0.25066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.25562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98.1                                                                                                                                                                                                                                                                                                                                                                 | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| B164497-BS1  | LCS                                                                                                                                                         | 0.84737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.86843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97.6                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| B164497-BSD1 | LCSD                                                                                                                                                        | 0.87086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.86843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| B164497-BS1  | LCS                                                                                                                                                         | 0.38410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.43421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88.5                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| B164497-BSD1 | LCSD                                                                                                                                                        | 0.39587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.43421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 91.2                                                                                                                                                                                                                                                                                                                                                                 | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| B164497-BS1  | LCS                                                                                                                                                         | 1.2315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.3026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| B164497-BSD1 | LCSD                                                                                                                                                        | 1.2667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.3026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97.2                                                                                                                                                                                                                                                                                                                                                                 | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| B164497-BS1  | LCS                                                                                                                                                         | 3.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 104                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| B164497-BSD1 | LCSD                                                                                                                                                        | 3.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 102                                                                                                                                                                                                                                                                                                                                                                  | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|              | B164497-BSD1<br>B164497-BS1<br>B164497-BSD1<br>B164497-BSD1<br>B164497-BSD1<br>B164497-BSD1<br>B164497-BSD1<br>B164497-BSD1<br>B164497-BSD1<br>B164497-BSD1 | B164497-BS1         LCS           B164497-BS1         LCSD           B164497-BS1         LCS           B164497-BS1         LCSD           B164497-BS1         LCSD | B164497-BS1         LCS         0.51636           B164497-BSD1         LCSD         0.52002           B164497-BS1         LCS         0.22934           B164497-BS1         LCSD         0.25066           B164497-BS1         LCSD         0.25066           B164497-BS1         LCS         0.84737           B164497-BS1         LCSD         0.87086           B164497-BS1         LCSD         0.38410           B164497-BS1         LCSD         0.39587           B164497-BS1         LCS         1.2315           B164497-BS1         LCSD         1.2667           B164497-BS1         LCSD         3.72 | QC Sample ID         Type         Result         Level           B164497-BS1         LCS         0.51636         0.53737           B164497-BSD1         LCSD         0.52002         0.53737           B164497-BSD1         LCSD         0.22934         0.25562           B164497-BS1         LCSD         0.25066         0.25562           B164497-BS11         LCSD         0.84737         0.86843           B164497-BS11         LCSD         0.87086         0.86843           B164497-BS11         LCS         0.39587         0.43421           B164497-BS11         LCS         1.2315         1.3026           B164497-BS11         LCSD         1.2667         1.3026           B164497-BS11         LCSD         3.72         3.58 | QC Sample IDTypeResultLevelUnitsB164497-BS1LCS0.516360.53737ug/m3B164497-BSD1LCSD0.520020.53737ug/m3B164497-BS1LCS0.229340.25562ug/m3B164497-BS1LCSD0.250660.25562ug/m3B164497-BS1LCSD0.847370.86843ug/m3B164497-BS1LCS0.847370.86843ug/m3B164497-BS1LCS0.395870.43421ug/m3B164497-BS1LCS1.23151.3026ug/m3B164497-BS1LCS1.23151.3026ug/m3B164497-BS1LCS3.723.58ug/m3 | QC Sample IDTypeResultLevelUnitsRecoveryB164497-BS1LCS0.516360.53737ug/m396.1B164497-BS1LCSD0.520020.53737ug/m396.8B164497-BS1LCS0.229340.25562ug/m389.7B164497-BS1LCSD0.250660.25562ug/m398.1B164497-BS1LCS0.847370.86843ug/m397.6B164497-BS1LCS0.847360.86843ug/m3100B164497-BS1LCS0.384100.43421ug/m388.5B164497-BS1LCS0.395870.43421ug/m391.2B164497-BS1LCS1.23151.3026ug/m394.5B164497-BS1LCS1.26671.3026ug/m397.2B164497-BS1LCS3.723.58ug/m3104 | QC Sample IDTypeResultLevelUnitsRecoveryRPDB164497-BS1LCS0.516360.53737ug/m396.1B164497-BSD1LCSD0.520020.53737ug/m396.80.7B164497-BS1LCS0.229340.25562ug/m389.7B164497-BS1LCSD0.250660.25562ug/m398.18.9B164497-BS11LCS0.847370.86843ug/m397.6B164497-BS11LCS0.847360.86843ug/m31002.7B164497-BS11LCS0.395870.43421ug/m388.5B164497-BS11LCS1.23151.3026ug/m391.23.0B164497-BS11LCS1.23151.3026ug/m394.5B164497-BS11LCS1.26671.3026ug/m397.22.8B164497-BS11LCS3.723.58ug/m3104 | QC Sample IDTypeResultSpike<br>LevelUnitsPercent<br>RecoveryPercent<br>RPDPercent<br>RecoveryB164497-BS1LCS0.516360.53737ug/m396.170 - 130B164497-BSD1LCSD0.520020.53737ug/m396.80.770 - 130B164497-BS1LCS0.229340.25562ug/m389.770 - 130B164497-BS1LCSD0.250660.25562ug/m398.18.970 - 130B164497-BS1LCS0.847370.86843ug/m397.670 - 130B164497-BS1LCS0.384100.43421ug/m388.570 - 130B164497-BS1LCS0.395870.43421ug/m388.570 - 130B164497-BS1LCS1.23151.3026ug/m394.570 - 130B164497-BS1LCS1.23151.3026ug/m394.570 - 130B164497-BS1LCS1.23151.3026ug/m394.570 - 130B164497-BS1LCS1.23151.3026ug/m394.570 - 130B164497-BS1LCS1.23151.3026ug/m394.570 - 130B164497-BS1LCS3.723.58ug/m310450 - 150 | QC Sample IDTypeResultSpike<br>LevelUnitsPercent<br>RecoveryPercent<br>RPDPercent<br>RecoveryRPDB164497-BS1LCS0.516360.53737ug/m396.170 - 13030B164497-BSD1LCSD0.520020.53737ug/m396.80.770 - 13030B164497-BS1LCS0.229340.25562ug/m389.770 - 13030B164497-BS1LCSD0.250660.25562ug/m398.18.970 - 13030B164497-BS1LCS0.847370.86843ug/m397.670 - 13030B164497-BS1LCS0.870860.86843ug/m31002.770 - 13030B164497-BS1LCS0.384100.43421ug/m388.570 - 13030B164497-BS1LCS1.23151.3026ug/m394.570 - 13030B164497-BS1LCS1.26671.3026ug/m394.570 - 13030B164497-BS1LCS1.26671.3026ug/m397.22.870 - 13030B164497-BS11LCS1.26671.3026ug/m397.22.870 - 13030B164497-BS11LCS3.723.58ug/m310450 - 15010 | QC Sample ID         Type         Result         Spike<br>Level         Units         Percent<br>Recovery         Percent<br>Recovery         Percent<br>Recovery         Lab<br>Quals           B164497-BS1         LCS         0.51636         0.53737         ug/m3         96.1         70 - 130         50           B164497-BS1         LCS         0.52002         0.53737         ug/m3         96.8         0.7         70 - 130         30           B164497-BS1         LCS         0.22934         0.25562         ug/m3         89.7         70 - 130         30           B164497-BS1         LCS         0.25066         0.25562         ug/m3         89.7         70 - 130         30           B164497-BS1         LCS         0.84737         0.86843         ug/m3         97.6         70 - 130         30           B164497-BS1         LCS         0.38410         0.43421         ug/m3         97.6         70 - 130         30           B164497-BS1         LCS         0.39587         0.43421         ug/m3         88.5         70 - 130         30           B164497-BS1         LCS         1.2315         1.3026         ug/m3         94.5         70 - 130         30           B164497-BS1         LCSD         < |  |  |

### **Quality Control Report - Laboratory Control Sample**

|       |              |         |               |           | Run            |         |            |          |
|-------|--------------|---------|---------------|-----------|----------------|---------|------------|----------|
| Run # | QC Sample ID | QC Type | Method        | Prep Date | Date Time      | Analyst | Instrument | Dilution |
| 1     | B164497-BS1  | LCS     | EPA-TO-15-SIM | 04/19/23  | 04/20/23 00:41 | BEP     | MS-A2      | 1        |
| 2     | B164497-BSD1 | LCSD    | EPA-TO-15-SIM | 04/19/23  | 04/20/23 01:20 | BEP     | MS-A2      | 1        |



Reported:04/26/202312:44Project:City TerraceProject Number:2855Project Manager:April McGuire

### Fixed Gases by GC/TCD (ASTM D1946)

### **Quality Control Report - Method Blank Analysis**

| Constituent |                        |         | QC Sample ID | MB Result | Units            | PC      | QL         | MDL     | Lab Quals | Run # |
|-------------|------------------------|---------|--------------|-----------|------------------|---------|------------|---------|-----------|-------|
| QC Bat      | <b>ach ID: B164745</b> |         | B164745-BLK1 | ND        | ppmv             | 2       | .0         | 1.8     |           | 1     |
| Run #       | QC Sample ID           | QC Type | Method       | Prep Date | Run<br>Date Time | Analyst | Instrument | Dilutio | n         |       |
| 1           | B164745-BLK1           | PB      | ASTM-D1946   | 04/24/23  | 04/24/23 13:03   | RMK     | GC-A1      | 1       |           |       |



Reported: 04/26/2023 12:44 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

### **Quality Control Report - Laboratory Control Sample**

|                      |              |      |        |                |       |                     |     | Control L           | imits |              |       |
|----------------------|--------------|------|--------|----------------|-------|---------------------|-----|---------------------|-------|--------------|-------|
| Constituent          | QC Sample ID | Туре | Result | Spike<br>Level | Units | Percent<br>Recovery | RPD | Percent<br>Recovery | RPD   | Lab<br>Quals | Run # |
| QC Batch ID: B164745 |              |      |        |                |       |                     |     |                     |       |              |       |
| Methane (CH4)        | B164745-BS1  | LCS  | 19083  | 18000          | ppmv  | 106                 |     | 70 - 130            |       |              | 1     |
|                      | B164745-BSD1 | LCSD | 19015  | 18000          | ppmv  | 106                 | 0.4 | 70 - 130            | 30    |              | 2     |

|       |              |         |            |           | Run            |         |            |          |  |
|-------|--------------|---------|------------|-----------|----------------|---------|------------|----------|--|
| Run # | QC Sample ID | QC Type | Method     | Prep Date | Date Time      | Analyst | Instrument | Dilution |  |
| 1     | B164745-BS1  | LCS     | ASTM-D1946 | 04/24/23  | 04/24/23 12:22 | RMK     | GC-A1      | 1        |  |
| 2     | B164745-BSD1 | LCSD    | ASTM-D1946 | 04/24/23  | 04/24/23 12:42 | RMK     | GC-A1      | 1        |  |



#### Reported: 04/26/2023 12:44 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

#### **Notes And Definitions**

- MDL Method Detection Limit
- ND Analyte Not Detected
- PQL Practical Quantitation Limit
- A01 Detection and quantitation limits are raised due to sample dilution.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 01419017 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Date of Report: 05/10/2023

April McGuire

Roux Associates, Inc -Long Beach 5150 E. Pacific Coast Hwy, Suite 450 Long Beach, CA 90804

Client Project:2855BCL Project:City TerraceBCL Work Order:2308087Invoice ID:B475603

Enclosed are the results of analyses for samples received by the laboratory on 4/22/2023. If you have any questions concerning this report, please feel free to contact me.

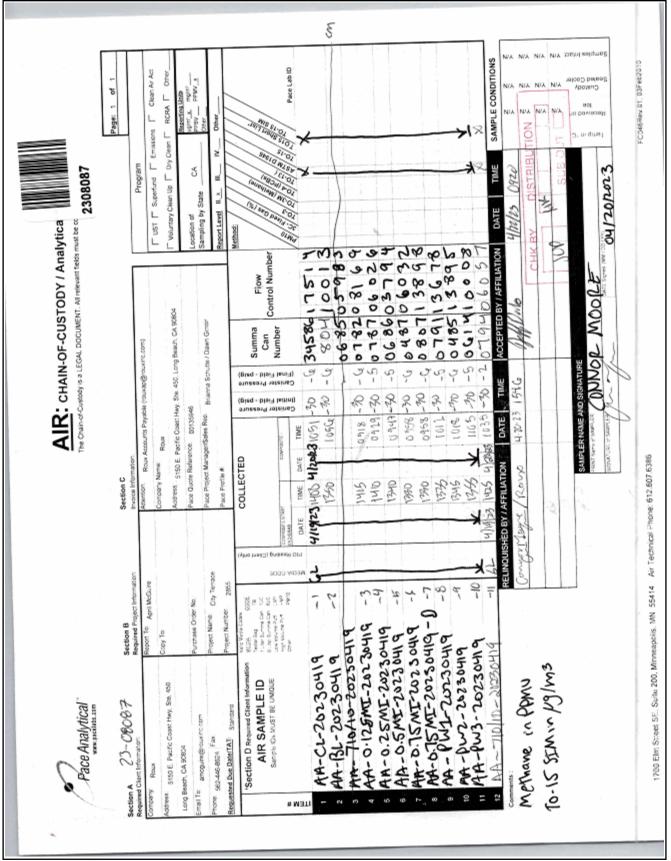
Sincerely,

Contact Person: Brianna Schutte Client Services Rep

A

Stuart Buttram Operations Manager

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101




### **Table of Contents**

| Sample Information                                                                                  |            |
|-----------------------------------------------------------------------------------------------------|------------|
| Chain of Custody and Cooler Receipt form                                                            |            |
| Laboratory / Client Sample Cross Reference                                                          | 6          |
| Sample Results                                                                                      |            |
| 2308087-01 - AA-CL-20230419                                                                         |            |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       |            |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  | 10         |
| 2308087-02 - AA-BL-20230419                                                                         |            |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       |            |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  | 13         |
| 2308087-03 - AA-0.125MI-20230419                                                                    |            |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       |            |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |            |
| 2308087-04 - AA-0.25MI-20230419                                                                     |            |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       |            |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |            |
| 2308087-05 - AA-0.5MI-20230419                                                                      |            |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       |            |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |            |
| 2308087-06 - AA-0.75MI-20230419                                                                     |            |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       |            |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |            |
| 2308087-07 - AA-0.75MI-20230419-D                                                                   |            |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       |            |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |            |
| 2308087-08 - AA-PW1-20230419                                                                        | 00         |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       |            |
| Fixed Gases by GC/TCD (ASTM D1946)<br>2308087-09 - AA-PW2-20230419                                  |            |
|                                                                                                     | 22         |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)<br>Fixed Gases by GC/TCD (ASTM D1946) |            |
| 2308087-10 - AA-PW3-20230419                                                                        |            |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       | 25         |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |            |
| 2308087-11 - AA-710/10-20230419                                                                     |            |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       | 20         |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |            |
| Quality Control Reports                                                                             | 40         |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       |            |
| Method Blank Analysis                                                                               | 11         |
| Laboratory Control Sample                                                                           |            |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |            |
| Method Blank Analysis                                                                               | <b>A</b> 7 |
| Laboratory Control Sample                                                                           |            |
| Notes                                                                                               |            |
| Notes and Definitions                                                                               | 40         |
|                                                                                                     |            |



#### Chain of Custody and Cooler Receipt Form for 2308087 Page 1 of 3



The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



#### Chain of Custody and Cooler Receipt Form for 2308087 Page 2 of 3

| Submission #: 23-08087<br>SHIPPING INFO              | RMA   | TION       |           |            | SH<br>Ice Ches |          |          | Page 1<br>ER 1<br>Box 0 | F         | REE LIQI<br>ES D NO<br>W / S | o to 🛛                        |
|------------------------------------------------------|-------|------------|-----------|------------|----------------|----------|----------|-------------------------|-----------|------------------------------|-------------------------------|
| Fed Ex UPS C GSO / G<br>Pace Lab Field Service C Oth | ner 🗆 | (Specify   | )         |            | Other          | (Speci   | fy)      |                         |           | 4470                         |                               |
| Refrigerant: Ice 🗆 Blue Ice 🛙                        | 5     | None       | Oth       |            | comment        |          |          |                         |           |                              |                               |
| Custody Seals Ice Chest                              | l c   | ontainen   | 3 🗆       | None       | Comme          | ents:    |          |                         |           |                              |                               |
| Intact? Yes D No D                                   |       | t? Yes 🗆 I |           |            |                |          | Deseriet | ion(o) matr             | b COC? Y  | es No                        |                               |
| All samples received? Yes No 🗆                       | All s | amples co  | ontainers | intact? Y  | es DI Nos      |          |          |                         | Deterring | 4/22/2                       | 13                            |
|                                                      | Emiss | ivity:     | <u> </u>  | ntainer: 🚊 | WENT TI        | ermomete | r 10:    | _                       | Daterina  | nit JCD                      | (ADA)                         |
| YES DNO                                              | Temp  | erature: ( | AL R      | cóm        | <u>.*c / (</u> | c) 10    | mp       | *C                      | Analyst   | nit (100                     | 0.00                          |
|                                                      | 1     |            |           |            |                |          | NUMBERS  |                         |           |                              |                               |
| SAMPLE CONTAINERS                                    | Ì     | 1          | 2         | 3          | 4              | 5        | 6        | 7                       | 8         | 9                            | - 10                          |
| OT P& UNPRES                                         |       |            |           |            |                |          |          |                         |           |                              |                               |
| doz/Soz/16oz PE UNPRES                               | _     |            |           |            |                |          |          |                         |           |                              | ļ                             |
| lex Cr <sup>44</sup>                                 | _     |            |           |            |                |          |          |                         |           |                              |                               |
| QT INORGANIC CHEMICAL METALS                         | -     |            |           |            |                |          |          |                         |           |                              |                               |
| INORGANIC CHEMICAL METALS 402/1802/1                 | 702   |            |           |            |                |          |          |                         |           |                              |                               |
| PT CYANIDE<br>PT NITROGEN FORMS                      |       |            |           |            |                |          |          |                         |           |                              |                               |
| PT TOTAL SULFIDE                                     |       |            |           |            |                |          |          |                         |           |                              |                               |
| 207. NITRATE / NITRITE                               |       |            |           |            |                |          |          |                         |           |                              |                               |
| PT TOTAL ORGANIC CARBON                              |       |            |           |            |                |          |          |                         |           |                              |                               |
| PT CHEMICAL OXYGEN DEMAND                            |       |            |           |            |                |          |          |                         |           |                              |                               |
| PIA PHENOLICS                                        |       |            |           |            |                |          |          |                         |           |                              |                               |
| 40ml YOA VIAL TRAVEL BLANK                           |       |            |           |            |                |          |          |                         |           |                              | +                             |
| 40ml VOA VIAL<br>OT EPA 16648                        |       |            |           |            |                |          |          |                         |           |                              |                               |
| PT ODOR                                              |       |            |           |            |                |          |          | +                       |           |                              |                               |
| RADIOLOGICAL                                         |       |            |           | +          |                |          |          |                         |           |                              |                               |
| BACTERIOLOGICAL                                      |       |            |           |            |                |          |          |                         |           |                              |                               |
| 40 mI VOA VIAL- 514                                  |       |            |           | +          |                |          |          |                         |           |                              |                               |
| QT EPA 508/608.3/8081A                               |       |            |           |            |                |          |          | 1                       |           |                              |                               |
| QT EPA 515.1/8151A                                   |       |            |           |            |                |          |          |                         |           |                              |                               |
| OT EPA 525.2<br>OT EPA 525.2 TRAVEL BLANK            |       |            |           |            |                |          |          |                         |           |                              |                               |
| 40ml EPA 547                                         |       |            |           |            |                |          |          | +                       |           |                              |                               |
| 40ml EPA 531.1                                       |       |            |           |            |                |          |          |                         |           |                              |                               |
| Soz EPA 548.1                                        |       |            |           |            |                |          |          |                         |           |                              |                               |
| OT EPA 549.2                                         | _     |            |           |            |                |          |          |                         |           |                              |                               |
| QT EPA 8015M                                         |       |            |           |            |                |          |          |                         |           |                              |                               |
| QT EPA 8270C                                         |       |            |           |            |                |          |          |                         |           |                              |                               |
| 802/1602/3202 AMBER                                  |       | 1          | 1-        |            |                |          |          |                         |           |                              |                               |
| Sex / 16oz / 32oz JAR                                |       |            |           |            |                |          |          |                         |           |                              |                               |
| SOIL SLEEVE<br>PCB VIAL                              |       |            |           |            |                |          |          |                         |           |                              |                               |
| PLASTIC BAG                                          |       |            |           |            |                |          |          |                         |           |                              |                               |
| TEDLAR BAG                                           | _     |            |           |            |                |          |          |                         |           |                              |                               |
| FERROUS IRON                                         |       |            |           |            |                |          |          |                         |           |                              |                               |
| ENCORB                                               |       |            |           |            |                |          |          |                         |           |                              |                               |
| SMART KIT                                            |       |            | 1         | A          | A              | + A      | A        | A                       | A         | A                            | A                             |
| SUMMA CANISTER 6.U                                   | -     | A          | A         |            |                |          |          |                         |           |                              |                               |
| Comments:<br>Sample Numbering Completed By:          |       | (p         |           | D          | ate/Time:      | 1/12/23  | 1000     | >                       |           |                              | 23 05/20/22<br>ISANTECIES 25] |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



#### Chain of Custody and Cooler Receipt Form for 2308087 Page 3 of 3

| Submission #: 23-08087<br>SHIPPING INFO<br>Fed Ex UPS G GSO/G<br>Pace Lab Field Service Oth | RMATIO     | land Del  | ivery 🗆     | S<br>Ice Ch<br>Oth | HIPPING<br>est 🗆<br>er 🗆 (Sp | G CONTA<br>None D<br>ecify) | Box d           |                      | FREE LIG<br>YES D I<br>W / | NON                                          |  |
|---------------------------------------------------------------------------------------------|------------|-----------|-------------|--------------------|------------------------------|-----------------------------|-----------------|----------------------|----------------------------|----------------------------------------------|--|
| Refrigerant: Ice  Blue Ice  None  Other  Comments:                                          |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| Custody Seals Ice Chest                                                                     |            | ners 🗆    | 1           | Comr               |                              |                             |                 |                      |                            |                                              |  |
| All samples received? Yes No D                                                              | Ali sample | s contain | ers intact? | Yes No             | 0                            | Descri                      | iption(s) mat   | ch COC2              | Vac N No                   | -                                            |  |
| COC Received                                                                                | missivity: | _         | Container:  | Simon              | Thermome                     | ter ID:                     |                 | Date/Tir             | ne 4/22/                   | 23                                           |  |
|                                                                                             | emperature | 9: (A)    | ncon        | _•c /              | (c)_1                        | emp                         | °C              | Analyst              | Init JCD                   | DAZO                                         |  |
| SAMPLE CONTAINERS                                                                           |            |           |             |                    | SAMPL                        | E NUMBER                    | 5               |                      |                            | 1                                            |  |
| QT PE UNPRES                                                                                | 1          | 2         | - 3         | 4                  | 6                            | 6                           | 7               | 8                    | 3                          | 10 1                                         |  |
| 402/802/1602 PE UNPRES                                                                      | _          |           |             |                    | <u> </u>                     |                             |                 |                      |                            |                                              |  |
| 2oz Cr <sup>es</sup>                                                                        |            |           |             |                    |                              | +                           |                 |                      |                            | <u>   </u>                                   |  |
| OT INORGANIC CHEMICAL METALS                                                                | -          |           |             |                    |                              |                             |                 |                      |                            | <u>                                     </u> |  |
| INORGANIC CHEMICAL METALS 40g / 80g / 160                                                   |            |           | _           |                    |                              |                             |                 |                      |                            | <u> </u>                                     |  |
| PT CYANIDE                                                                                  |            |           |             | 1                  |                              |                             |                 |                      |                            |                                              |  |
| PT NITROGEN FORMS                                                                           |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| PT TOTAL SULFIDE                                                                            |            |           |             |                    |                              |                             |                 |                      |                            | -                                            |  |
| 202. NITRATE / NITRITE                                                                      |            |           |             | <u> </u>           |                              |                             |                 |                      |                            |                                              |  |
| PT TOTAL ORGANIC CARBON                                                                     |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| PT CHEMICAL OXYGEN DEMAND                                                                   |            |           |             |                    |                              |                             | 1               |                      |                            |                                              |  |
| PIA PHENOLICS                                                                               |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| 40ml VOA VIAL TRAVEL BLANK                                                                  |            |           |             |                    |                              |                             | +               |                      |                            |                                              |  |
| 40ml VOA VIAL                                                                               |            |           |             |                    |                              | [                           |                 |                      |                            |                                              |  |
| QT EPA 1664B                                                                                |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| PT ODOR                                                                                     |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| RADIOLOGICAL                                                                                |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| BACTERIOLOGICAL                                                                             |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| 40 ml VOA VIAL- 504                                                                         |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| QT EPA 508/603,3/8081A                                                                      |            |           | _           |                    |                              |                             |                 |                      |                            |                                              |  |
| QT EPA 515.1/8151A                                                                          |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| QT EPA 525.2                                                                                |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| IT EPA 525.2 TRAVEL BLANK                                                                   |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| 0ml EPA 547<br>0ml EPA 531.1                                                                |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| 0m1 EPA 531.1<br>07 EPA 548.1                                                               |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
|                                                                                             |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| T EPA 549.2                                                                                 |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| T EPA 8015M                                                                                 | <u> </u>   |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| T EPA 8270C<br>ez/16oz/32ez AMBER                                                           |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| 12/1602/3202 AMBER                                                                          |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| DIL SLEEVE                                                                                  |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| CB VIAL                                                                                     |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| LASTIC BAG                                                                                  |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| EDLAR BAG                                                                                   |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| ERROUS IRON                                                                                 |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| NCORE                                                                                       |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| ART KIT                                                                                     |            |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| JMMA CANISTER                                                                               | A          |           |             |                    |                              |                             |                 |                      |                            |                                              |  |
| mments:                                                                                     | _/1        | -         |             |                    | _                            |                             |                 |                      |                            |                                              |  |
| nnents:                                                                                     | D          |           | Date/       | Fime: 4/2          | 2/13                         | 000                         | (S:WPDoe0%ardPa | dualit in the second | Rev 23 06/2                |                                              |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 01423799 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 05/10/2023 15:58 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

### Laboratory / Client Sample Cross Reference

| Laboratory | Client Sample Informati | on                   |                |                  |
|------------|-------------------------|----------------------|----------------|------------------|
| 2308087-01 | COC Number:             |                      | Receive Date:  | 04/22/2023 09:20 |
|            | Project Number:         |                      | Sampling Date: | 04/20/2023 10:51 |
|            | Sampling Location:      |                      | Sample Depth:  |                  |
|            | Sampling Point:         | AA-CL-20230419       | Lab Matrix:    | Air              |
|            | Sampled By:             | Client               | Sample Type:   | Vapor or Air     |
| 2308087-02 | COC Number:             |                      | Receive Date:  | 04/22/2023 09:20 |
|            | Project Number:         |                      | Sampling Date: | 04/20/2023 10:56 |
|            | Sampling Location:      |                      | Sample Depth:  |                  |
|            | Sampling Point:         | AA-BL-20230419       | Lab Matrix:    | Air              |
|            | Sampled By:             | Client               | Sample Type:   | Vapor or Air     |
| 308087-03  | COC Number:             |                      | Receive Date:  | 04/22/2023 09:20 |
|            | Project Number:         |                      | Sampling Date: | 04/20/2023 09:18 |
|            | Sampling Location:      |                      | Sample Depth:  |                  |
|            | Sampling Point:         | AA-0.125MI-20230419  | Lab Matrix:    | Air              |
|            | Sampled By:             | Client               | Sample Type:   | Vapor or Air     |
| 2308087-04 | COC Number:             |                      | Receive Date:  | 04/22/2023 09:20 |
|            | Project Number:         |                      | Sampling Date: | 04/20/2023 09:29 |
|            | Sampling Location:      |                      | Sample Depth:  |                  |
|            | Sampling Point:         | AA-0.25MI-20230419   | Lab Matrix:    | Air              |
|            | Sampled By:             | Client               | Sample Type:   | Vapor or Air     |
| 2308087-05 | COC Number:             |                      | Receive Date:  | 04/22/2023 09:20 |
|            | Project Number:         |                      | Sampling Date: | 04/20/2023 09:47 |
|            | Sampling Location:      |                      | Sample Depth:  |                  |
|            | Sampling Point:         | AA-0.5MI-20230419    | Lab Matrix:    | Air              |
|            | Sampled By:             | Client               | Sample Type:   | Vapor or Air     |
| 2308087-06 | COC Number:             |                      | Receive Date:  | 04/22/2023 09:20 |
|            | Project Number:         |                      | Sampling Date: | 04/20/2023 09:58 |
|            | Sampling Location:      |                      | Sample Depth:  |                  |
|            | Sampling Point:         | AA-0.75MI-20230419   | Lab Matrix:    | Air              |
|            | Sampled By:             | Client               | Sample Type:   | Vapor or Air     |
| 2308087-07 | COC Number:             |                      | Receive Date:  | 04/22/2023 09:20 |
|            | Project Number:         |                      | Sampling Date: | 04/20/2023 09:58 |
|            | Sampling Location:      |                      | Sample Depth:  |                  |
|            | Sampling Point:         | AA-0.75MI-20230419-D | Lab Matrix:    | Air              |
|            | Sampled By:             | Client               | Sample Type:   | Vapor or Air     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 1123799 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

### Laboratory / Client Sample Cross Reference

| Laboratory | Client Sample Informati | on                 |                |                  |
|------------|-------------------------|--------------------|----------------|------------------|
| 2308087-08 | COC Number:             |                    | Receive Date:  | 04/22/2023 09:20 |
|            | Project Number:         |                    | Sampling Date: | 04/20/2023 10:12 |
|            | Sampling Location:      |                    | Sample Depth:  |                  |
|            | Sampling Point:         | AA-PW1-20230419    | Lab Matrix:    | Air              |
|            | Sampled By:             | Client             | Sample Type:   | Vapor or Air     |
| 2308087-09 | COC Number:             |                    | Receive Date:  | 04/22/2023 09:20 |
|            | Project Number:         |                    | Sampling Date: | 04/20/2023 10:18 |
|            | Sampling Location:      |                    | Sample Depth:  |                  |
|            | Sampling Point:         | AA-PW2-20230419    | Lab Matrix:    | Air              |
|            | Sampled By:             | Client             | Sample Type:   | Vapor or Air     |
| 2308087-10 | COC Number:             |                    | Receive Date:  | 04/22/2023 09:20 |
|            | Project Number:         |                    | Sampling Date: | 04/20/2023 11:05 |
|            | Sampling Location:      |                    | Sample Depth:  |                  |
|            | Sampling Point:         | AA-PW3-20230419    | Lab Matrix:    | Air              |
|            | Sampled By:             | Client             | Sample Type:   | Vapor or Air     |
| 2308087-11 | COC Number:             |                    | Receive Date:  | 04/22/2023 09:20 |
|            | Project Number:         |                    | Sampling Date: | 04/20/2023 10:35 |
|            | Sampling Location:      |                    | Sample Depth:  |                  |
|            | Sampling Point:         | AA-710/10-20230419 | Lab Matrix:    | Air              |
|            | Sampled By:             | Client             | Sample Type:   | Vapor or Air     |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2308               | Client Sam | ole Name: | AA-CL-20     | 230419, 4/ | 20/2023 10:51:00 | AM, Client |              |     |
|-----------------------------------|------------|-----------|--------------|------------|------------------|------------|--------------|-----|
| Constituent                       | Result     | Units     | PQL          | MDL        | Method           | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                           | 7.1        | ug/m3     | 5.0          | 0.038      | EPA-TO-15-SIM    | ND         | A01          | 1   |
| Benzene                           | 0.96       | ug/m3     | 0.050        | 0.0032     | EPA-TO-15-SIM    | ND         |              | 2   |
| Benzyl chloride                   | ND         | ug/m3     | 0.50         | 0.0052     | EPA-TO-15-SIM    | ND         |              | 2   |
| Carbon tetrachloride              | ND         | ug/m3     | 0.20         | 0.0063     | EPA-TO-15-SIM    | ND         |              | 2   |
| Chlorobenzene                     | ND         | ug/m3     | 0.10         | 0.0079     | EPA-TO-15-SIM    | ND         |              | 2   |
| Chloroform                        | ND         | ug/m3     | 0.050        | 0.0058     | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,2-Dibromoethane                 | ND         | ug/m3     | 0.20         | 0.014      | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,2-Dichlorobenzene               | ND         | ug/m3     | 0.20         | 0.011      | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,3-Dichlorobenzene               | ND         | ug/m3     | 0.20         | 0.013      | EPA-TO-15-SIM    | ND         | V11          | 2   |
| 1,4-Dichlorobenzene               | ND         | ug/m3     | 0.20         | 0.016      | EPA-TO-15-SIM    | ND         |              | 2   |
| Dichlorodifluoromethane           | 2.1        | ug/m3     | 0.050        | 0.0052     | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,1-Dichloroethane                | ND         | ug/m3     | 0.050        | 0.0041     | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,2-Dichloroethane                | ND         | ug/m3     | 0.10         | 0.0046     | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,1-Dichloroethene                | ND         | ug/m3     | 0.050        | 0.0078     | EPA-TO-15-SIM    | ND         |              | 2   |
| cis-1,2-Dichloroethene            | ND         | ug/m3     | 0.050        | 0.0044     | EPA-TO-15-SIM    | ND         |              | 2   |
| trans-1,2-Dichloroethene          | ND         | ug/m3     | 0.050        | 0.0075     | EPA-TO-15-SIM    | ND         |              | 2   |
| trans-1,3-Dichloropropene         | ND         | ug/m3     | 0.050        | 0.013      | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,1-Difluoroethane                | 0.76       | ug/m3     | 5.0          | 0.0027     | EPA-TO-15-SIM    | ND         | J            | 2   |
| Ethylbenzene                      | 0.39       | ug/m3     | 0.050        | 0.017      | EPA-TO-15-SIM    | ND         |              | 2   |
| Methylene chloride                | ND         | ug/m3     | 0.20         | 0.0077     | EPA-TO-15-SIM    | ND         |              | 2   |
| Tetrachloroethene                 | ND         | ug/m3     | 0.10         | 0.011      | EPA-TO-15-SIM    | ND         |              | 2   |
| Toluene                           | 1.9        | ug/m3     | 0.50         | 0.031      | EPA-TO-15-SIM    | ND         | A01          | 1   |
| 1,1,1-Trichloroethane             | ND         | ug/m3     | 0.10         | 0.0055     | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,1,2-Trichloroethane             | ND         | ug/m3     | 0.10         | 0.0055     | EPA-TO-15-SIM    | ND         |              | 2   |
| Trichloroethene                   | 3.4        | ug/m3     | 0.50         | 0.048      | EPA-TO-15-SIM    | ND         | A01          | 1   |
| Trichlorofluoromethane            | 1.3        | ug/m3     | 0.050        | 0.0057     | EPA-TO-15-SIM    | ND         |              | 2   |
| 1,1,2-Trichloro-1,2,2-trifluoroet | hane 0.61  | ug/m3     | 0.10         | 0.0078     | EPA-TO-15-SIM    | ND         |              | 2   |
| Vinyl chloride                    | ND         | ug/m3     | 0.020        | 0.0046     | EPA-TO-15-SIM    | ND         |              | 2   |
| p- & m-Xylenes                    | 1.4        | ug/m3     | 0.050        | 0.0082     | EPA-TO-15-SIM    | ND         |              | 2   |
| o-Xylene                          | 0.49       | ug/m3     | 0.050        | 0.0044     | EPA-TO-15-SIM    | ND         |              | 2   |
| Total Xylenes                     | 1.9        | ug/m3     | 0.10         | 0.013      | EPA-TO-15-SIM    | ND         |              | 2   |
| 4-Bromofluorobenzene (Surroga     | ate) 95.0  | %         | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM    |            |              | 1   |
| 4-Bromofluorobenzene (Surroga     | ate) 103   | %         | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM    |            |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

An results instead in this report are not the exclusive use of the submitting party. Face Analytical assumes no responsionity for report are radius, separation, detachine 001423799 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 05/10/2023 15:58 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2308087-01    | Client San     | nple Name:     | AA-CL-202304 | 419, 4/20/2023 | 10:51:00AM, | Client   |           |
|---------------|---------------|----------------|----------------|--------------|----------------|-------------|----------|-----------|
|               |               | -              | Run            |              |                |             | QC       |           |
| DCN           | Method        | Prep Date      | Date/Time      | Analyst      | Instrument     | Dilution    | Batch ID |           |
| 1             | EPA-TO-15-SIM | 04/25/23 13:30 | 04/26/23 13:32 | BEP          | MS-A2          | 5           | B164877  | EPA TO-15 |
| 2             | EPA-TO-15-SIM | 04/25/23 13:30 | 04/26/23 02:02 | BEP          | MS-A2          | 1           | B164877  | EPA TO-15 |

DCN = Data Continuation Number

Page 9 of 49



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308087-01 | Client Sampl | e Name: | AA-CL-20230419, 4/20/2023 10:51:00AM, Client |     |            |            |              |     |  |
|----------------|------------|--------------|---------|----------------------------------------------|-----|------------|------------|--------------|-----|--|
| Constituent    |            | Result       | Units   | PQL                                          | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |  |
| Methane (CH4)  |            | 63           | ppmv    | 2.0                                          | 1.8 | ASTM-D1946 | ND         |              | 1   |  |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/01/23 10:47 | 05/01/23 16:50 | RMK     | GC-A1      | 1        | B165213  | No Prep     |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 230               | 8087-02 Client Sa | ample Name: | AA-BL-20     | 0230419, 4/ |               |            |              |     |
|----------------------------------|-------------------|-------------|--------------|-------------|---------------|------------|--------------|-----|
| Constituent                      | Resu              | lt Units    | PQL          | MDL         | Method        | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                          | 8.5               | ug/m3       | 5.0          | 0.038       | EPA-TO-15-SIM | ND         | A01          | 1   |
| Benzene                          | 0.88              | ug/m3       | 0.050        | 0.0032      | EPA-TO-15-SIM | ND         |              | 2   |
| Benzyl chloride                  | ND                | ug/m3       | 0.50         | 0.0052      | EPA-TO-15-SIM | ND         |              | 2   |
| Carbon tetrachloride             | ND                | ug/m3       | 0.20         | 0.0063      | EPA-TO-15-SIM | ND         |              | 2   |
| Chlorobenzene                    | ND                | ug/m3       | 0.10         | 0.0079      | EPA-TO-15-SIM | ND         |              | 2   |
| Chloroform                       | ND                | ug/m3       | 0.050        | 0.0058      | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dibromoethane                | ND                | ug/m3       | 0.20         | 0.014       | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dichlorobenzene              | ND                | ug/m3       | 0.20         | 0.011       | EPA-TO-15-SIM | ND         |              | 2   |
| 1,3-Dichlorobenzene              | ND                | ug/m3       | 0.20         | 0.013       | EPA-TO-15-SIM | ND         | V11          | 2   |
| 1,4-Dichlorobenzene              | ND                | ug/m3       | 0.20         | 0.016       | EPA-TO-15-SIM | ND         |              | 2   |
| Dichlorodifluoromethane          | 2.1               | ug/m3       | 0.050        | 0.0052      | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Dichloroethane               | ND                | ug/m3       | 0.050        | 0.0041      | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dichloroethane               | ND                | ug/m3       | 0.10         | 0.0046      | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Dichloroethene               | ND                | ug/m3       | 0.050        | 0.0078      | EPA-TO-15-SIM | ND         |              | 2   |
| cis-1,2-Dichloroethene           | ND                | ug/m3       | 0.050        | 0.0044      | EPA-TO-15-SIM | ND         |              | 2   |
| trans-1,2-Dichloroethene         | ND                | ug/m3       | 0.050        | 0.0075      | EPA-TO-15-SIM | ND         |              | 2   |
| trans-1,3-Dichloropropene        | ND                | ug/m3       | 0.050        | 0.013       | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Difluoroethane               | 0.66              | ug/m3       | 5.0          | 0.0027      | EPA-TO-15-SIM | ND         | J            | 2   |
| Ethylbenzene                     | 0.43              | ug/m3       | 0.050        | 0.017       | EPA-TO-15-SIM | ND         |              | 2   |
| Methylene chloride               | ND                | ug/m3       | 0.20         | 0.0077      | EPA-TO-15-SIM | ND         |              | 2   |
| Tetrachloroethene                | ND                | ug/m3       | 0.10         | 0.011       | EPA-TO-15-SIM | ND         |              | 2   |
| Foluene                          | 1.9               | ug/m3       | 0.50         | 0.031       | EPA-TO-15-SIM | ND         | A01          | 1   |
| 1,1,1-Trichloroethane            | ND                | ug/m3       | 0.10         | 0.0055      | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1,2-Trichloroethane            | ND                | ug/m3       | 0.10         | 0.0055      | EPA-TO-15-SIM | ND         |              | 2   |
| Trichloroethene                  | 0.93              | ug/m3       | 0.10         | 0.0095      | EPA-TO-15-SIM | ND         |              | 2   |
| Trichlorofluoromethane           | 1.3               | ug/m3       | 0.050        | 0.0057      | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1,2-Trichloro-1,2,2-trifluoroe | thane 0.61        | ug/m3       | 0.10         | 0.0078      | EPA-TO-15-SIM | ND         |              | 2   |
| Vinyl chloride                   | ND                | ug/m3       | 0.020        | 0.0046      | EPA-TO-15-SIM | ND         |              | 2   |
| p- & m-Xylenes                   | 1.6               | ug/m3       | 0.050        | 0.0082      | EPA-TO-15-SIM | ND         |              | 2   |
| o-Xylene                         | 0.52              | ug/m3       | 0.050        | 0.0044      | EPA-TO-15-SIM | ND         |              | 2   |
| Total Xylenes                    | 2.1               | ug/m3       | 0.10         | 0.013       | EPA-TO-15-SIM | ND         |              | 2   |
| 4-Bromofluorobenzene (Surrog     | ate) 92.5         | %           | 50 - 150 (LO | CL - UCL)   | EPA-TO-15-SIM |            |              | 1   |
| 4-Bromofluorobenzene (Surrog     | ate) 94.1         | %           | 50 - 150 (L  | CL - UCL)   | EPA-TO-15-SIM |            |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11423700 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001423799



Reported: 05/10/2023 15:58 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2308087-02    | Client Sam     | Client Sample Name: AA-BL-20230419, 4/20/20 |         |            |          | 023 10:56:00AM, Client |           |  |  |
|---------------|---------------|----------------|---------------------------------------------|---------|------------|----------|------------------------|-----------|--|--|
|               |               | ·              | Run                                         |         |            |          | QC                     |           |  |  |
| DCN           | Method        | Prep Date      | Date/Time                                   | Analyst | Instrument | Dilution | Batch ID               |           |  |  |
| 1             | EPA-TO-15-SIM | 04/25/23 13:30 | 04/26/23 14:09                              | BEP     | MS-A2      | 5        | B164877                | EPA TO-15 |  |  |
| 2             | EPA-TO-15-SIM | 04/25/23 13:30 | 04/26/23 02:45                              | BEP     | MS-A2      | 1        | B164877                | EPA TO-15 |  |  |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308087-02 | Client Sample | e Name: | AA-BL-20 |     |            |            |              |     |
|----------------|------------|---------------|---------|----------|-----|------------|------------|--------------|-----|
| Constituent    |            | Result        | Units   | PQL      | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | ND            | ppmv    | 2.0      | 1.8 | ASTM-D1946 | ND         |              | 1   |

| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| 1   | ASTM-D1946 | 05/01/23 10:47 | 05/01/23 17:11 | RMK     | GC-A1      | 1        | B165213  | No Prep     |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23               | 08087-03 | Client Sampl | e Name: | AA-0.125MI-20230419, 4/20/2023 9:18:00AM, Client |          |               |            |              |     |  |
|---------------------------------|----------|--------------|---------|--------------------------------------------------|----------|---------------|------------|--------------|-----|--|
| Constituent                     |          | Result       | Units   | PQL                                              | MDL      | Method        | MB<br>Bias | Lab<br>Quals | DCN |  |
| Acetone                         |          | 8.3          | ug/m3   | 5.0                                              | 0.038    | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| Benzene                         |          | 1.1          | ug/m3   | 0.050                                            | 0.0032   | EPA-TO-15-SIM | ND         |              | 2   |  |
| Benzyl chloride                 |          | ND           | ug/m3   | 0.50                                             | 0.0052   | EPA-TO-15-SIM | ND         |              | 2   |  |
| Carbon tetrachloride            |          | ND           | ug/m3   | 0.20                                             | 0.0063   | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chlorobenzene                   |          | ND           | ug/m3   | 0.10                                             | 0.0079   | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chloroform                      |          | ND           | ug/m3   | 0.050                                            | 0.0058   | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dibromoethane               |          | ND           | ug/m3   | 0.20                                             | 0.014    | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dichlorobenzene             |          | ND           | ug/m3   | 0.20                                             | 0.011    | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,3-Dichlorobenzene             |          | ND           | ug/m3   | 0.20                                             | 0.013    | EPA-TO-15-SIM | ND         | V11          | 2   |  |
| 1,4-Dichlorobenzene             |          | ND           | ug/m3   | 0.20                                             | 0.016    | EPA-TO-15-SIM | ND         |              | 2   |  |
| Dichlorodifluoromethane         |          | 2.1          | ug/m3   | 0.050                                            | 0.0052   | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1-Dichloroethane              |          | ND           | ug/m3   | 0.050                                            | 0.0041   | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dichloroethane              |          | ND           | ug/m3   | 0.10                                             | 0.0046   | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1-Dichloroethene              |          | ND           | ug/m3   | 0.050                                            | 0.0078   | EPA-TO-15-SIM | ND         |              | 2   |  |
| cis-1,2-Dichloroethene          |          | ND           | ug/m3   | 0.050                                            | 0.0044   | EPA-TO-15-SIM | ND         |              | 2   |  |
| trans-1,2-Dichloroethene        |          | ND           | ug/m3   | 0.050                                            | 0.0075   | EPA-TO-15-SIM | ND         |              | 2   |  |
| rans-1,3-Dichloropropene        |          | ND           | ug/m3   | 0.050                                            | 0.013    | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1-Difluoroethane              |          | 1.1          | ug/m3   | 5.0                                              | 0.0027   | EPA-TO-15-SIM | ND         | J            | 2   |  |
| Ethylbenzene                    |          | 0.59         | ug/m3   | 0.050                                            | 0.017    | EPA-TO-15-SIM | ND         |              | 2   |  |
| Methylene chloride              |          | ND           | ug/m3   | 0.20                                             | 0.0077   | EPA-TO-15-SIM | ND         |              | 2   |  |
| Tetrachloroethene               |          | ND           | ug/m3   | 0.10                                             | 0.011    | EPA-TO-15-SIM | ND         |              | 2   |  |
| Foluene                         |          | 2.5          | ug/m3   | 0.50                                             | 0.031    | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| 1,1,1-Trichloroethane           |          | ND           | ug/m3   | 0.10                                             | 0.0055   | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1,2-Trichloroethane           |          | ND           | ug/m3   | 0.10                                             | 0.0055   | EPA-TO-15-SIM | ND         |              | 2   |  |
| Trichloroethene                 |          | 2.6          | ug/m3   | 0.10                                             | 0.0095   | EPA-TO-15-SIM | ND         |              | 2   |  |
| Trichlorofluoromethane          |          | 1.3          | ug/m3   | 0.050                                            | 0.0057   | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1,2-Trichloro-1,2,2-trifluoro | oethane  | 0.61         | ug/m3   | 0.10                                             | 0.0078   | EPA-TO-15-SIM | ND         |              | 2   |  |
| Vinyl chloride                  |          | ND           | ug/m3   | 0.020                                            | 0.0046   | EPA-TO-15-SIM | ND         |              | 2   |  |
| p- & m-Xylenes                  |          | 2.1          | ug/m3   | 0.050                                            | 0.0082   | EPA-TO-15-SIM | ND         |              | 2   |  |
| o-Xylene                        |          | 0.77         | ug/m3   | 0.050                                            | 0.0044   | EPA-TO-15-SIM | ND         |              | 2   |  |
| Total Xylenes                   |          | 2.8          | ug/m3   | 0.10                                             | 0.013    | EPA-TO-15-SIM | ND         |              | 2   |  |
| 4-Bromofluorobenzene (Surro     | ogate)   | 86.9         | %       | 50 - 150 (LC                                     | L - UCL) | EPA-TO-15-SIM |            |              | 1   |  |
| 4-Bromofluorobenzene (Surro     | ogate)   | 105          | %       | 50 - 150 (LC                                     | L - UCL) | EPA-TO-15-SIM |            |              | 2   |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | : 2308087-03  | Client San     | Client Sample Name: AA-0.125MI-20230419, 4/2 |         |            |          | 20/2023 9:18:00AM, Client |           |  |  |
|---------------|---------------|----------------|----------------------------------------------|---------|------------|----------|---------------------------|-----------|--|--|
|               |               | -              | Run                                          |         |            |          | QC                        |           |  |  |
| DCN           | Method        | Prep Date      | Date/Time                                    | Analyst | Instrument | Dilution | Batch ID                  |           |  |  |
| 1             | EPA-TO-15-SIM | 04/25/23 13:30 | 04/26/23 14:49                               | BEP     | MS-A2      | 5        | B164877                   | EPA TO-15 |  |  |
| 2             | EPA-TO-15-SIM | 04/25/23 13:30 | 04/26/23 03:29                               | BEP     | MS-A2      | 1        | B164877                   | EPA TO-15 |  |  |



Reported: 05/10/2023 15:58 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308087-03 | Client Sampl | e Name: | AA-0.125MI-20230419, 4/20/2023 |     |            | 9:18:00AM, Clie | ent          |     |
|----------------|------------|--------------|---------|--------------------------------|-----|------------|-----------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL                            | MDL | Method     | MB<br>Bias      | Lab<br>Quals | DCN |
| Methane (CH4)  |            | ND           | ppmv    | 2.0                            | 1.8 | ASTM-D1946 | ND              |              | 1   |

| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| 1   | ASTM-D1946 | 05/01/23 10:47 | 05/01/23 17:31 | RMK     | GC-A1      | 1        | B165213  | No Prep     |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23080              | 087-04 Client Sampl | e Name: | AA-0.25M     | II-2023041 | , 4/20/2023 9:29:00AM, Client |            |              |     |
|-----------------------------------|---------------------|---------|--------------|------------|-------------------------------|------------|--------------|-----|
| Constituent                       | Result              | Units   | PQL          | MDL        | Method                        | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                           | 8.0                 | ug/m3   | 5.0          | 0.038      | EPA-TO-15-SIM                 | ND         | A01          | 1   |
| Benzene                           | 0.86                | ug/m3   | 0.050        | 0.0032     | EPA-TO-15-SIM                 | ND         |              | 2   |
| Benzyl chloride                   | ND                  | ug/m3   | 0.50         | 0.0052     | EPA-TO-15-SIM                 | ND         |              | 2   |
| Carbon tetrachloride              | ND                  | ug/m3   | 0.20         | 0.0063     | EPA-TO-15-SIM                 | ND         |              | 2   |
| Chlorobenzene                     | ND                  | ug/m3   | 0.10         | 0.0079     | EPA-TO-15-SIM                 | ND         |              | 2   |
| Chloroform                        | ND                  | ug/m3   | 0.050        | 0.0058     | EPA-TO-15-SIM                 | ND         |              | 2   |
| 1,2-Dibromoethane                 | ND                  | ug/m3   | 0.20         | 0.014      | EPA-TO-15-SIM                 | ND         |              | 2   |
| ,2-Dichlorobenzene                | ND                  | ug/m3   | 0.20         | 0.011      | EPA-TO-15-SIM                 | ND         |              | 2   |
| 1,3-Dichlorobenzene               | ND                  | ug/m3   | 0.20         | 0.013      | EPA-TO-15-SIM                 | ND         | V11          | 2   |
| I,4-Dichlorobenzene               | ND                  | ug/m3   | 0.20         | 0.016      | EPA-TO-15-SIM                 | ND         |              | 2   |
| Dichlorodifluoromethane           | 2.2                 | ug/m3   | 0.050        | 0.0052     | EPA-TO-15-SIM                 | ND         |              | 2   |
| I,1-Dichloroethane                | ND                  | ug/m3   | 0.050        | 0.0041     | EPA-TO-15-SIM                 | ND         |              | 2   |
| ,2-Dichloroethane                 | ND                  | ug/m3   | 0.10         | 0.0046     | EPA-TO-15-SIM                 | ND         |              | 2   |
| ,1-Dichloroethene                 | ND                  | ug/m3   | 0.050        | 0.0078     | EPA-TO-15-SIM                 | ND         |              | 2   |
| sis-1,2-Dichloroethene            | ND                  | ug/m3   | 0.050        | 0.0044     | EPA-TO-15-SIM                 | ND         |              | 2   |
| rans-1,2-Dichloroethene           | ND                  | ug/m3   | 0.050        | 0.0075     | EPA-TO-15-SIM                 | ND         |              | 2   |
| rans-1,3-Dichloropropene          | ND                  | ug/m3   | 0.050        | 0.013      | EPA-TO-15-SIM                 | ND         |              | 2   |
| I,1-Difluoroethane                | 0.73                | ug/m3   | 5.0          | 0.0027     | EPA-TO-15-SIM                 | ND         | J            | 2   |
| Ethylbenzene                      | 0.46                | ug/m3   | 0.050        | 0.017      | EPA-TO-15-SIM                 | ND         |              | 2   |
| Nethylene chloride                | ND                  | ug/m3   | 0.20         | 0.0077     | EPA-TO-15-SIM                 | ND         |              | 2   |
| etrachloroethene                  | ND                  | ug/m3   | 0.10         | 0.011      | EPA-TO-15-SIM                 | ND         |              | 2   |
| oluene                            | 1.8                 | ug/m3   | 0.50         | 0.031      | EPA-TO-15-SIM                 | ND         | A01          | 1   |
| ,1,1-Trichloroethane              | ND                  | ug/m3   | 0.10         | 0.0055     | EPA-TO-15-SIM                 | ND         |              | 2   |
| ,1,2-Trichloroethane              | ND                  | ug/m3   | 0.10         | 0.0055     | EPA-TO-15-SIM                 | ND         |              | 2   |
| richloroethene                    | 2.7                 | ug/m3   | 0.10         | 0.0095     | EPA-TO-15-SIM                 | ND         |              | 2   |
| richlorofluoromethane             | 1.3                 | ug/m3   | 0.050        | 0.0057     | EPA-TO-15-SIM                 | ND         |              | 2   |
| ,1,2-Trichloro-1,2,2-trifluoroeth | ane 0.61            | ug/m3   | 0.10         | 0.0078     | EPA-TO-15-SIM                 | ND         |              | 2   |
| /inyl chloride                    | ND                  | ug/m3   | 0.020        | 0.0046     | EPA-TO-15-SIM                 | ND         |              | 2   |
| - & m-Xylenes                     | 1.7                 | ug/m3   | 0.050        | 0.0082     | EPA-TO-15-SIM                 | ND         |              | 2   |
| -Xylene                           | 0.58                | ug/m3   | 0.050        | 0.0044     | EPA-TO-15-SIM                 | ND         |              | 2   |
| otal Xylenes                      | 2.2                 | ug/m3   | 0.10         | 0.013      | EPA-TO-15-SIM                 | ND         |              | 2   |
| -Bromofluorobenzene (Surrogat     | e) 91.1             | %       | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM                 |            |              | 1   |
| I-Bromofluorobenzene (Surrogat    | e) 104              | %       | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM                 |            |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 05/10/2023 15:58 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample I | <b>D:</b> 2308087-04 | Client San     | nple Name:     | AA-0.25MI-20 | 230419, 4/20/20 | 230419, 4/20/2023 9:29:00AM, Client |          |           |  |  |
|--------------|----------------------|----------------|----------------|--------------|-----------------|-------------------------------------|----------|-----------|--|--|
|              |                      |                | Run            |              |                 |                                     | QC       |           |  |  |
| DCN          | Method               | Prep Date      | Date/Time      | Analyst      | Instrument      | Dilution                            | Batch ID |           |  |  |
| 1            | EPA-TO-15-SIM        | 04/25/23 13:30 | 04/26/23 15:26 | BEP          | MS-A2           | 5                                   | B164877  | EPA TO-15 |  |  |
| 2            | EPA-TO-15-SIM        | 04/25/23 13:30 | 04/26/23 04:12 | BEP          | MS-A2           | 1                                   | B164877  | EPA TO-15 |  |  |



Reported: 05/10/2023 15:58 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308087-04 | Client Sample | e Name: | AA-0.25M | II-20230419 | 9, 4/20/2023 | 9:29:00AM, Client |              |     |
|----------------|------------|---------------|---------|----------|-------------|--------------|-------------------|--------------|-----|
| Constituent    |            | Result        | Units   | PQL      | MDL         | Method       | MB<br>Bias        | Lab<br>Quals | DCN |
| Methane (CH4)  |            | ND            | ppmv    | 2.0      | 1.8         | ASTM-D1946   | 6 ND              |              | 1   |

|     |            | Run            |                |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/01/23 10:47 | 05/01/23 17:51 | RMK     | GC-A1      | 1        | B165213  | No Prep     |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2308087-05             | 5 Client Sample | Name: | AA-0.5MI     | AA-0.5MI-20230419, 4/20/2023 9:47:00AM, Client |               |            |              |                 |  |  |
|---------------------------------------|-----------------|-------|--------------|------------------------------------------------|---------------|------------|--------------|-----------------|--|--|
| Constituent                           | Result          | Units | PQL          | MDL                                            | Method        | MB         | Lab          | DON             |  |  |
| Constituent<br>Acetone                | 10              | ug/m3 | 5.0          | 0.038                                          | EPA-TO-15-SIM | Bias<br>ND | Quals<br>A01 | <u>DCN</u><br>1 |  |  |
| Benzene                               | 1.0             | ug/m3 | 0.050        | 0.0032                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| Benzyl chloride                       | ND              | ug/m3 | 0.50         | 0.0052                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| Carbon tetrachloride                  | ND              | ug/m3 | 0.20         | 0.0063                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| Chlorobenzene                         | ND              | ug/m3 | 0.10         | 0.0079                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| Chloroform                            | ND              | ug/m3 | 0.050        | 0.0058                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| 1,2-Dibromoethane                     | ND              | ug/m3 | 0.20         | 0.014                                          | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| 1,2-Dichlorobenzene                   | ND              | ug/m3 | 0.20         | 0.011                                          | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| 1,3-Dichlorobenzene                   | ND              | ug/m3 | 0.20         | 0.013                                          | EPA-TO-15-SIM | ND         | V11          | 2               |  |  |
| 1,4-Dichlorobenzene                   | ND              | ug/m3 | 0.20         | 0.016                                          | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| Dichlorodifluoromethane               | 2.1             | ug/m3 | 0.050        | 0.0052                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| 1,1-Dichloroethane                    | ND              | ug/m3 | 0.050        | 0.0041                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| 1,2-Dichloroethane                    | ND              | ug/m3 | 0.10         | 0.0046                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| I,1-Dichloroethene                    | ND              | ug/m3 | 0.050        | 0.0078                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| cis-1,2-Dichloroethene                | ND              | ug/m3 | 0.050        | 0.0044                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| rans-1,2-Dichloroethene               | ND              | ug/m3 | 0.050        | 0.0075                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| trans-1,3-Dichloropropene             | ND              | ug/m3 | 0.050        | 0.013                                          | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| 1,1-Difluoroethane                    | 1.0             | ug/m3 | 5.0          | 0.0027                                         | EPA-TO-15-SIM | ND         | J            | 2               |  |  |
| Ethylbenzene                          | 0.52            | ug/m3 | 0.050        | 0.017                                          | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| Methylene chloride                    | ND              | ug/m3 | 0.20         | 0.0077                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| Tetrachloroethene                     | ND              | ug/m3 | 0.10         | 0.011                                          | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| Foluene                               | 2.2             | ug/m3 | 0.50         | 0.031                                          | EPA-TO-15-SIM | ND         | A01          | 1               |  |  |
| 1,1,1-Trichloroethane                 | ND              | ug/m3 | 0.10         | 0.0055                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| 1,1,2-Trichloroethane                 | ND              | ug/m3 | 0.10         | 0.0055                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| Trichloroethene                       | 3.6             | ug/m3 | 0.50         | 0.048                                          | EPA-TO-15-SIM | ND         | A01          | 1               |  |  |
| Trichlorofluoromethane                | 1.3             | ug/m3 | 0.050        | 0.0057                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.60            | ug/m3 | 0.10         | 0.0078                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| Vinyl chloride                        | ND              | ug/m3 | 0.020        | 0.0046                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| o- & m-Xylenes                        | 1.9             | ug/m3 | 0.050        | 0.0082                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| o-Xylene                              | 0.67            | ug/m3 | 0.050        | 0.0044                                         | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| Fotal Xylenes                         | 2.6             | ug/m3 | 0.10         | 0.013                                          | EPA-TO-15-SIM | ND         |              | 2               |  |  |
| 4-Bromofluorobenzene (Surrogate)      | 87.2            | %     | 50 - 150 (LC | L - UCL)                                       | EPA-TO-15-SIM |            |              | 1               |  |  |
| 4-Bromofluorobenzene (Surrogate)      | 101             | %     | 50 - 150 (LC | L - UCL)                                       | EPA-TO-15-SIM |            |              | 2               |  |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11423700 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001423799



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample I | <b>D:</b> 2308087-05 | Client San     | nple Name:     | AA-0.5MI-202 | 30419, 4/20/202 | 3 9:47:00AI | M, Client |           |
|--------------|----------------------|----------------|----------------|--------------|-----------------|-------------|-----------|-----------|
|              |                      | -              | Run            |              |                 |             | QC        |           |
| DCN          | Method               | Prep Date      | Date/Time      | Analyst      | Instrument      | Dilution    | Batch ID  |           |
| 1            | EPA-TO-15-SIM        | 04/25/23 13:30 | 04/26/23 16:05 | BEP          | MS-A2           | 5           | B164877   | EPA TO-15 |
| 2            | EPA-TO-15-SIM        | 04/25/23 13:30 | 04/26/23 04:57 | BEP          | MS-A2           | 1           | B164877   | EPA TO-15 |



Reported: 05/10/2023 15:58 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308087-05 | Client Sampl | e Name: | AA-0.5MI- | 20230419 | 4/20/2023 9: | 47:00AM, Client |              |     |
|----------------|------------|--------------|---------|-----------|----------|--------------|-----------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL       | MDL      | Method       | MB<br>Bias      | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 12           | ppmv    | 2.0       | 1.8      | ASTM-D1946   | ND              |              | 1   |

| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| 1   | ASTM-D1946 | 05/01/23 10:47 | 05/01/23 18:11 | RMK     | GC-A1      | 1        | B165213  | No Prep     |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2308087-0              | 6 Client Sample | Client Sample Name: |              |          | AA-0.75MI-20230419, 4/20/2023 9:58:00AM, Client |            |              |                 |  |  |  |
|---------------------------------------|-----------------|---------------------|--------------|----------|-------------------------------------------------|------------|--------------|-----------------|--|--|--|
| Constituent                           |                 | 11:0:14:0           | PQL          | MDL      | Mathad                                          | MB         | Lab          | DON             |  |  |  |
| Constituent<br>Acetone                | Result<br>7.7   | Units<br>ug/m3      | 5.0          | 0.038    | Method<br>EPA-TO-15-SIM                         | Bias<br>ND | Quals<br>A01 | <u>DCN</u><br>1 |  |  |  |
| Benzene                               | 1.0             | ug/m3               | 0.050        | 0.0032   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| Benzyl chloride                       | ND              | ug/m3               | 0.50         | 0.0052   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| Carbon tetrachloride                  | ND              | ug/m3               | 0.20         | 0.0063   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| Chlorobenzene                         | ND              | ug/m3               | 0.10         | 0.0079   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| Chloroform                            | ND              | ug/m3               | 0.050        | 0.0058   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| 1,2-Dibromoethane                     | ND              | ug/m3               | 0.20         | 0.014    | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| 1,2-Dichlorobenzene                   | ND              | ug/m3               | 0.20         | 0.011    | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| 1,3-Dichlorobenzene                   | ND              | ug/m3               | 0.20         | 0.013    | EPA-TO-15-SIM                                   | ND         | V11          | 2               |  |  |  |
| 1,4-Dichlorobenzene                   | ND              | ug/m3               | 0.20         | 0.016    | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| Dichlorodifluoromethane               | 2.1             | ug/m3               | 0.050        | 0.0052   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| 1,1-Dichloroethane                    | ND              | ug/m3               | 0.050        | 0.0041   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| 1,2-Dichloroethane                    | ND              | ug/m3               | 0.10         | 0.0046   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| I,1-Dichloroethene                    | ND              | ug/m3               | 0.050        | 0.0078   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| cis-1,2-Dichloroethene                | ND              | ug/m3               | 0.050        | 0.0044   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| rans-1,2-Dichloroethene               | ND              | ug/m3               | 0.050        | 0.0075   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| rans-1,3-Dichloropropene              | ND              | ug/m3               | 0.050        | 0.013    | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| 1,1-Difluoroethane                    | 1.1             | ug/m3               | 5.0          | 0.0027   | EPA-TO-15-SIM                                   | ND         | J            | 2               |  |  |  |
| Ethylbenzene                          | 0.54            | ug/m3               | 0.050        | 0.017    | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| Methylene chloride                    | ND              | ug/m3               | 0.20         | 0.0077   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| Tetrachloroethene                     | ND              | ug/m3               | 0.10         | 0.011    | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| Foluene                               | 2.2             | ug/m3               | 0.50         | 0.031    | EPA-TO-15-SIM                                   | ND         | A01          | 1               |  |  |  |
| 1,1,1-Trichloroethane                 | ND              | ug/m3               | 0.10         | 0.0055   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| 1,1,2-Trichloroethane                 | ND              | ug/m3               | 0.10         | 0.0055   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| Trichloroethene                       | 4.5             | ug/m3               | 0.50         | 0.048    | EPA-TO-15-SIM                                   | ND         | A01          | 1               |  |  |  |
| Trichlorofluoromethane                | 1.3             | ug/m3               | 0.050        | 0.0057   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.61            | ug/m3               | 0.10         | 0.0078   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| /inyl chloride                        | ND              | ug/m3               | 0.020        | 0.0046   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| o- & m-Xylenes                        | 1.9             | ug/m3               | 0.050        | 0.0082   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| o-Xylene                              | 0.68            | ug/m3               | 0.050        | 0.0044   | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| Fotal Xylenes                         | 2.6             | ug/m3               | 0.10         | 0.013    | EPA-TO-15-SIM                                   | ND         |              | 2               |  |  |  |
| 4-Bromofluorobenzene (Surrogate)      | 92.2            | %                   | 50 - 150 (LC | L - UCL) | EPA-TO-15-SIM                                   |            |              | 1               |  |  |  |
| 4-Bromofluorobenzene (Surrogate)      | 99.7            | %                   | 50 - 150 (LC | L - UCL) | EPA-TO-15-SIM                                   |            |              | 2               |  |  |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11423700 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001423799



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample II | BCL Sample ID: 2308087-06 Client Sample Name: |                |                |         | AA-0.75MI-20230419, 4/20/2023 9:58:00AM, Client |          |          |           |  |  |
|---------------|-----------------------------------------------|----------------|----------------|---------|-------------------------------------------------|----------|----------|-----------|--|--|
|               |                                               | -              | Run            |         |                                                 |          | QC       |           |  |  |
| DCN           | Method                                        | Prep Date      | Date/Time      | Analyst | Instrument                                      | Dilution | Batch ID |           |  |  |
| 1             | EPA-TO-15-SIM                                 | 04/25/23 13:30 | 04/26/23 16:43 | BEP     | MS-A2                                           | 5        | B164877  | EPA TO-15 |  |  |
| 2             | EPA-TO-15-SIM                                 | 04/25/23 13:30 | 04/26/23 05:40 | BEP     | MS-A2                                           | 1        | B164877  | EPA TO-15 |  |  |



Reported: 05/10/2023 15:58 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308087-06 | Client Sample | e Name: | AA-0.75M | II-2023041 | 9, 4/20/2023 9: | 58:00AM, Clier | nt           |     |
|----------------|------------|---------------|---------|----------|------------|-----------------|----------------|--------------|-----|
| Constituent    |            | Result        | Units   | PQL      | MDL        | Method          | MB<br>Bias     | Lab<br>Quals | DCN |
| Methane (CH4)  |            | ND            | ppmv    | 2.0      | 1.8        | ASTM-D1946      | ND             |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/01/23 08:02 | 05/01/23 19:31 | RMK     | GC-A1      | 1        | B165241  | No Prep     |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 230808                | 7-07 Client Sampl | e Name: | AA-0.75N     | 11-2023041 | 9-D, 4/20/2023 9: | 58:00AM, C | 3:00AM, Client |     |  |
|--------------------------------------|-------------------|---------|--------------|------------|-------------------|------------|----------------|-----|--|
| Constituent                          | Result            | Units   | PQL          | MDL        | Method            | MB<br>Bias | Lab<br>Quals   | DCN |  |
| Acetone                              | 7.6               | ug/m3   | 5.0          | 0.038      | EPA-TO-15-SIM     | ND         | A01            | 1   |  |
| Benzene                              | 1.1               | ug/m3   | 0.050        | 0.0032     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| Benzyl chloride                      | ND                | ug/m3   | 0.50         | 0.0052     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| Carbon tetrachloride                 | ND                | ug/m3   | 0.20         | 0.0063     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| Chlorobenzene                        | ND                | ug/m3   | 0.10         | 0.0079     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| Chloroform                           | ND                | ug/m3   | 0.050        | 0.0058     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| 1,2-Dibromoethane                    | ND                | ug/m3   | 0.20         | 0.014      | EPA-TO-15-SIM     | ND         |                | 2   |  |
| 1,2-Dichlorobenzene                  | ND                | ug/m3   | 0.20         | 0.011      | EPA-TO-15-SIM     | ND         |                | 2   |  |
| 1,3-Dichlorobenzene                  | ND                | ug/m3   | 0.20         | 0.013      | EPA-TO-15-SIM     | ND         | V11            | 2   |  |
| 1,4-Dichlorobenzene                  | ND                | ug/m3   | 0.20         | 0.016      | EPA-TO-15-SIM     | ND         |                | 2   |  |
| Dichlorodifluoromethane              | 2.1               | ug/m3   | 0.050        | 0.0052     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| 1,1-Dichloroethane                   | ND                | ug/m3   | 0.050        | 0.0041     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| 1,2-Dichloroethane                   | ND                | ug/m3   | 0.10         | 0.0046     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| I,1-Dichloroethene                   | ND                | ug/m3   | 0.050        | 0.0078     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| cis-1,2-Dichloroethene               | ND                | ug/m3   | 0.050        | 0.0044     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| rans-1,2-Dichloroethene              | ND                | ug/m3   | 0.050        | 0.0075     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| rans-1,3-Dichloropropene             | ND                | ug/m3   | 0.050        | 0.013      | EPA-TO-15-SIM     | ND         |                | 2   |  |
| 1,1-Difluoroethane                   | 1.3               | ug/m3   | 25           | 0.014      | EPA-TO-15-SIM     | ND         | J,A01          | 1   |  |
| Ethylbenzene                         | 0.51              | ug/m3   | 0.050        | 0.017      | EPA-TO-15-SIM     | ND         |                | 2   |  |
| Methylene chloride                   | ND                | ug/m3   | 0.20         | 0.0077     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| Tetrachloroethene                    | ND                | ug/m3   | 0.10         | 0.011      | EPA-TO-15-SIM     | ND         |                | 2   |  |
| Foluene                              | 2.2               | ug/m3   | 0.50         | 0.031      | EPA-TO-15-SIM     | ND         | A01            | 1   |  |
| 1,1,1-Trichloroethane                | ND                | ug/m3   | 0.10         | 0.0055     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| 1,1,2-Trichloroethane                | ND                | ug/m3   | 0.10         | 0.0055     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| Trichloroethene                      | 0.57              | ug/m3   | 0.10         | 0.0095     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| Trichlorofluoromethane               | 1.3               | ug/m3   | 0.050        | 0.0057     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethar | ne 0.59           | ug/m3   | 0.10         | 0.0078     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| √inyl chloride                       | ND                | ug/m3   | 0.020        | 0.0046     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| p- & m-Xylenes                       | 1.9               | ug/m3   | 0.050        | 0.0082     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| o-Xylene                             | 0.65              | ug/m3   | 0.050        | 0.0044     | EPA-TO-15-SIM     | ND         |                | 2   |  |
| Total Xylenes                        | 2.5               | ug/m3   | 0.10         | 0.013      | EPA-TO-15-SIM     | ND         |                | 2   |  |
| 4-Bromofluorobenzene (Surrogate)     | 89.9              | %       | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM     |            |                | 1   |  |
| 4-Bromofluorobenzene (Surrogate)     | 106               | %       | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM     |            |                | 2   |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

An results instead in this report are not the exclusive use of the submitting party. The Analytical assumes to responsibility to report are ration, separation, detaching party and the submitting p



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2308087-07    | AA-0.75MI-20   | 230419-D, 4/20/ | 2023 9:58:0 | 00AM, Client |          |          |           |
|---------------|---------------|----------------|-----------------|-------------|--------------|----------|----------|-----------|
|               |               |                | Run             |             |              |          | QC       |           |
| DCN           | Method        | Prep Date      | Date/Time       | Analyst     | Instrument   | Dilution | Batch ID |           |
| 1             | EPA-TO-15-SIM | 04/25/23 13:30 | 04/26/23 17:21  | BEP         | MS-A2        | 5        | B164877  | EPA TO-15 |
| 2             | EPA-TO-15-SIM | 04/25/23 13:30 | 04/26/23 06:23  | BEP         | MS-A2        | 1        | B164877  | EPA TO-15 |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308087-07 | Client Sample | e Name: | AA-0.75M | II-2023041 | 9-D, 4/20/2023 | 9:58:00AM, CI |              |     |
|----------------|------------|---------------|---------|----------|------------|----------------|---------------|--------------|-----|
| Constituent    |            | Result        | Units   | PQL      | MDL        | Method         | MB<br>Bias    | Lab<br>Quals | DCN |
| Methane (CH4)  |            | ND            | ppmv    | 2.0      | 1.8        | ASTM-D1946     | ND            |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/01/23 08:02 | 05/01/23 19:51 | RMK     | GC-A1      | 1        | B165241  | No Prep     |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 230               | 08087-08 Clien | t Sample Name: | AA-P\       | AA-PW1-20230419, 4/20/2023 10:12:00AM, Client |               |            |              |     |  |
|----------------------------------|----------------|----------------|-------------|-----------------------------------------------|---------------|------------|--------------|-----|--|
| Constituent                      | Re             | sult Units     | ; PQL       | . MDL                                         | Method        | MB<br>Bias | Lab<br>Quals | DCN |  |
| Acetone                          |                | 14 ug/m3       | 5.0         | 0.038                                         | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| Benzene                          | 1              | l.4 ug/m3      | 8 0.050     | 0.0032                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| Benzyl chloride                  | 1              | ND ug/m3       | 0.50        | 0.0052                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| Carbon tetrachloride             | 1              | ND ug/m3       | 0.20        | 0.0063                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chlorobenzene                    | 1              | ND ug/m3       | 0.10        | 0.0079                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chloroform                       | 1              | ND ug/m3       | 0.050       | 0.0058                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dibromoethane                | 1              | ND ug/m3       | 0.20        | 0.014                                         | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dichlorobenzene              | 1              | ND ug/m3       | 0.20        | 0.011                                         | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,3-Dichlorobenzene              | 1              | ND ug/m3       | 0.20        | 0.013                                         | EPA-TO-15-SIM | ND         | V11          | 2   |  |
| 1,4-Dichlorobenzene              | 1              | ND ug/m3       | 0.20        | 0.016                                         | EPA-TO-15-SIM | ND         |              | 2   |  |
| Dichlorodifluoromethane          | 2              | 2.0 ug/m3      | 8 0.050     | 0.0052                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1-Dichloroethane               | 1              | ND ug/m3       | 0.050       | 0.0041                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dichloroethane               | 1              | ND ug/m3       | 0.10        | 0.0046                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1-Dichloroethene               | 1              | ND ug/m3       | 0.050       | 0.0078                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| cis-1,2-Dichloroethene           | 1              | ND ug/m3       | 0.050       | 0.0044                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| trans-1,2-Dichloroethene         | 1              | ND ug/m3       | 0.050       | 0.0075                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| trans-1,3-Dichloropropene        | 1              | ND ug/m3       | 0.050       | 0.013                                         | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1-Difluoroethane               | 1              | l.1 ug/m:      | 3 5.0       | 0.0027                                        | EPA-TO-15-SIM | ND         | J            | 2   |  |
| Ethylbenzene                     | 0              | .86 ug/m3      | 3 0.050     | 0.017                                         | EPA-TO-15-SIM | ND         |              | 2   |  |
| Methylene chloride               | 1              | ND ug/m3       | 0.20        | 0.0077                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| Tetrachloroethene                | 1              | ND ug/m3       | 0.10        | 0.011                                         | EPA-TO-15-SIM | ND         |              | 2   |  |
| Toluene                          | 2              | 2.9 ug/m3      | 3 0.50      | 0.031                                         | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| 1,1,1-Trichloroethane            | 1              | ND ug/m3       | 0.10        | 0.0055                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1,2-Trichloroethane            | 1              | ND ug/m3       | 0.10        | 0.0055                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| Trichloroethene                  | 2              | 1.3 ug/m3      | <b>0.50</b> | 0.048                                         | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| Trichlorofluoromethane           | 1              | l.2 ug/m3      | 8 0.050     | 0.0057                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1,2-Trichloro-1,2,2-trifluoroe | ethane 0       | .58 ug/m3      | 8 0.10      | 0.0078                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| Vinyl chloride                   | 1              | ND ug/m3       | 0.020       | 0.0046                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| p- & m-Xylenes                   | :              | 3.0 ug/m3      | 3 0.050     | 0.0082                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| o-Xylene                         | 1              | l.2 ug/m3      | B 0.050     | 0.0044                                        | EPA-TO-15-SIM | ND         |              | 2   |  |
| Fotal Xylenes                    | 4              | l.1 ug/m3      | 3 0.10      | 0.013                                         | EPA-TO-15-SIM | ND         |              | 2   |  |
| 4-Bromofluorobenzene (Surrog     | gate) 9        | 1.1 %          | 50 - 150    | (LCL - UCL)                                   | EPA-TO-15-SIM |            |              | 1   |  |
| 4-Bromofluorobenzene (Surrog     | gate) 1        | 19 %           | 50 - 150    | (LCL - UCL)                                   | EPA-TO-15-SIM |            |              | 2   |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11423700 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001423799



Reported: 05/10/2023 15:58 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2308087-08    | nple Name:     | AA-PW1-2023    | 30419, 4/20/2023 | 3 10:12:00AI | M, Client |          |           |
|---------------|---------------|----------------|----------------|------------------|--------------|-----------|----------|-----------|
|               |               | -              | Run            |                  |              |           | QC       |           |
| DCN           | Method        | Prep Date      | Date/Time      | Analyst          | Instrument   | Dilution  | Batch ID |           |
| 1             | EPA-TO-15-SIM | 04/25/23 13:30 | 04/26/23 17:59 | BEP              | MS-A2        | 5         | B164877  | EPA TO-15 |
| 2             | EPA-TO-15-SIM | 04/25/23 13:30 | 04/26/23 07:07 | BEP              | MS-A2        | 1         | B164877  | EPA TO-15 |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308087-08 | Client Sampl | e Name: | AA-PW1-2 | 20230419, | 4/20/2023 10:12 |            |              |     |
|----------------|------------|--------------|---------|----------|-----------|-----------------|------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL       | Method          | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 2.1          | ppmv    | 2.0      | 1.8       | ASTM-D1946      | ND         |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/01/23 08:02 | 05/01/23 20:52 | RMK     | GC-A1      | 1        | B165241  | No Prep     |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23              | 08087-09 | Client Sampl | e Name: | AA-PW2-20230419, 4/20/2023 10:18:00AM, Client |          |               |            |              |     |
|--------------------------------|----------|--------------|---------|-----------------------------------------------|----------|---------------|------------|--------------|-----|
| Constituent                    |          | Result       | Units   | PQL                                           | MDL      | Method        | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                        |          | 14           | ug/m3   | 5.0                                           | 0.038    | EPA-TO-15-SIM | ND         | A01          | 1   |
| Benzene                        |          | 1.7          | ug/m3   | 0.050                                         | 0.0032   | EPA-TO-15-SIM | ND         |              | 2   |
| Benzyl chloride                |          | ND           | ug/m3   | 0.50                                          | 0.0052   | EPA-TO-15-SIM | ND         |              | 2   |
| Carbon tetrachloride           |          | ND           | ug/m3   | 0.20                                          | 0.0063   | EPA-TO-15-SIM | ND         |              | 2   |
| Chlorobenzene                  |          | ND           | ug/m3   | 0.10                                          | 0.0079   | EPA-TO-15-SIM | ND         |              | 2   |
| Chloroform                     |          | ND           | ug/m3   | 0.050                                         | 0.0058   | EPA-TO-15-SIM | ND         |              | 2   |
| ,2-Dibromoethane               |          | ND           | ug/m3   | 0.20                                          | 0.014    | EPA-TO-15-SIM | ND         |              | 2   |
| ,2-Dichlorobenzene             |          | ND           | ug/m3   | 0.20                                          | 0.011    | EPA-TO-15-SIM | ND         |              | 2   |
| ,3-Dichlorobenzene             |          | ND           | ug/m3   | 0.20                                          | 0.013    | EPA-TO-15-SIM | ND         | V11          | 2   |
| ,4-Dichlorobenzene             |          | ND           | ug/m3   | 0.20                                          | 0.016    | EPA-TO-15-SIM | ND         |              | 2   |
| Dichlorodifluoromethane        |          | 2.0          | ug/m3   | 0.050                                         | 0.0052   | EPA-TO-15-SIM | ND         |              | 2   |
| ,1-Dichloroethane              |          | ND           | ug/m3   | 0.050                                         | 0.0041   | EPA-TO-15-SIM | ND         |              | 2   |
| ,2-Dichloroethane              |          | ND           | ug/m3   | 0.10                                          | 0.0046   | EPA-TO-15-SIM | ND         |              | 2   |
| ,1-Dichloroethene              |          | ND           | ug/m3   | 0.050                                         | 0.0078   | EPA-TO-15-SIM | ND         |              | 2   |
| is-1,2-Dichloroethene          |          | ND           | ug/m3   | 0.050                                         | 0.0044   | EPA-TO-15-SIM | ND         |              | 2   |
| rans-1,2-Dichloroethene        |          | ND           | ug/m3   | 0.050                                         | 0.0075   | EPA-TO-15-SIM | ND         |              | 2   |
| rans-1,3-Dichloropropene       |          | ND           | ug/m3   | 0.050                                         | 0.013    | EPA-TO-15-SIM | ND         |              | 2   |
| ,1-Difluoroethane              |          | 1.2          | ug/m3   | 5.0                                           | 0.0027   | EPA-TO-15-SIM | ND         | J            | 2   |
| Ethylbenzene                   |          | 0.88         | ug/m3   | 0.050                                         | 0.017    | EPA-TO-15-SIM | ND         |              | 2   |
| lethylene chloride             |          | ND           | ug/m3   | 0.20                                          | 0.0077   | EPA-TO-15-SIM | ND         |              | 2   |
| etrachloroethene               |          | ND           | ug/m3   | 0.10                                          | 0.011    | EPA-TO-15-SIM | ND         |              | 2   |
| oluene                         |          | 3.6          | ug/m3   | 0.50                                          | 0.031    | EPA-TO-15-SIM | ND         | A01          | 1   |
| ,1,1-Trichloroethane           |          | ND           | ug/m3   | 0.10                                          | 0.0055   | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1,2-Trichloroethane          |          | ND           | ug/m3   | 0.10                                          | 0.0055   | EPA-TO-15-SIM | ND         |              | 2   |
| richloroethene                 |          | 3.9          | ug/m3   | 0.50                                          | 0.048    | EPA-TO-15-SIM | ND         | A01          | 1   |
| richlorofluoromethane          |          | 1.3          | ug/m3   | 0.050                                         | 0.0057   | EPA-TO-15-SIM | ND         |              | 2   |
| ,1,2-Trichloro-1,2,2-trifluoro | ethane   | 0.58         | ug/m3   | 0.10                                          | 0.0078   | EPA-TO-15-SIM | ND         |              | 2   |
| /inyl chloride                 |          | ND           | ug/m3   | 0.020                                         | 0.0046   | EPA-TO-15-SIM | ND         |              | 2   |
| o- & m-Xylenes                 |          | 3.0          | ug/m3   | 0.050                                         | 0.0082   | EPA-TO-15-SIM | ND         |              | 2   |
| o-Xylene                       |          | 1.2          | ug/m3   | 0.050                                         | 0.0044   | EPA-TO-15-SIM | ND         |              | 2   |
| Fotal Xylenes                  |          | 4.2          | ug/m3   | 0.10                                          | 0.013    | EPA-TO-15-SIM | ND         |              | 2   |
| 4-Bromofluorobenzene (Surro    | ogate)   | 90.8         | %       | 50 - 150 (LC                                  | L - UCL) | EPA-TO-15-SIM |            |              | 1   |
| 4-Bromofluorobenzene (Surro    | ogate)   | 112          | %       | 50 - 150 (LC                                  | L - UCL) | EPA-TO-15-SIM |            |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11423700 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001423799



Reported: 05/10/2023 15:58 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2308087-09    | Client San     | nple Name:     | AA-PW2-2023 | 30419, 4/20/2023 | 0419, 4/20/2023 10:18:00AM, Client |          |           |  |
|---------------|---------------|----------------|----------------|-------------|------------------|------------------------------------|----------|-----------|--|
|               |               | -              | Run            |             |                  |                                    | QC       |           |  |
| DCN           | Method        | Prep Date      | Date/Time      | Analyst     | Instrument       | Dilution                           | Batch ID |           |  |
| 1             | EPA-TO-15-SIM | 04/25/23 13:30 | 04/26/23 18:36 | BEP         | MS-A2            | 5                                  | B164877  | EPA TO-15 |  |
| 2             | EPA-TO-15-SIM | 04/25/23 13:30 | 04/26/23 07:50 | BEP         | MS-A2            | 1                                  | B164877  | EPA TO-15 |  |



Reported: 05/10/2023 15:58 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308087-09 | Client Sample Name: AA-PW2-20230419, 4/20/2023 10:18:00AM, Client |       |     |     |            |            |              |     |
|----------------|------------|-------------------------------------------------------------------|-------|-----|-----|------------|------------|--------------|-----|
| Constituent    |            | Result                                                            | Units | PQL | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 55                                                                | ppmv  | 2.0 | 1.8 | ASTM-D1946 | ND         |              | 1   |

|     |            |                | Run            |         |            | QC       |          |             |  |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|--|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |  |
| 1   | ASTM-D1946 | 05/01/23 08:02 | 05/01/23 21:12 | RMK     | GC-A1      | 1        | B165241  | No Prep     |  |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2308              | Client Samp | le Name: | AA-PW3-      | 20230419, |               |            |              |     |
|----------------------------------|-------------|----------|--------------|-----------|---------------|------------|--------------|-----|
| Constituent                      | Result      | Units    | PQL          | MDL       | Method        | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                          | 8.3         | ug/m3    | 5.0          | 0.038     | EPA-TO-15-SIM | ND         | A01          | 1   |
| Benzene                          | 1.1         | ug/m3    | 0.050        | 0.0032    | EPA-TO-15-SIM | ND         |              | 2   |
| Benzyl chloride                  | ND          | ug/m3    | 0.50         | 0.0052    | EPA-TO-15-SIM | ND         |              | 2   |
| Carbon tetrachloride             | ND          | ug/m3    | 0.20         | 0.0063    | EPA-TO-15-SIM | ND         |              | 2   |
| Chlorobenzene                    | ND          | ug/m3    | 0.10         | 0.0079    | EPA-TO-15-SIM | ND         |              | 2   |
| Chloroform                       | ND          | ug/m3    | 0.050        | 0.0058    | EPA-TO-15-SIM | ND         |              | 2   |
| ,2-Dibromoethane                 | ND          | ug/m3    | 0.20         | 0.014     | EPA-TO-15-SIM | ND         |              | 2   |
| ,2-Dichlorobenzene               | ND          | ug/m3    | 0.20         | 0.011     | EPA-TO-15-SIM | ND         |              | 2   |
| ,3-Dichlorobenzene               | ND          | ug/m3    | 0.20         | 0.013     | EPA-TO-15-SIM | ND         | V11          | 2   |
| I,4-Dichlorobenzene              | ND          | ug/m3    | 0.20         | 0.016     | EPA-TO-15-SIM | ND         |              | 2   |
| Dichlorodifluoromethane          | 2.0         | ug/m3    | 0.050        | 0.0052    | EPA-TO-15-SIM | ND         |              | 2   |
| ,1-Dichloroethane                | ND          | ug/m3    | 0.050        | 0.0041    | EPA-TO-15-SIM | ND         |              | 2   |
| ,2-Dichloroethane                | ND          | ug/m3    | 0.10         | 0.0046    | EPA-TO-15-SIM | ND         |              | 2   |
| ,1-Dichloroethene                | ND          | ug/m3    | 0.050        | 0.0078    | EPA-TO-15-SIM | ND         |              | 2   |
| is-1,2-Dichloroethene            | ND          | ug/m3    | 0.050        | 0.0044    | EPA-TO-15-SIM | ND         |              | 2   |
| rans-1,2-Dichloroethene          | ND          | ug/m3    | 0.050        | 0.0075    | EPA-TO-15-SIM | ND         |              | 2   |
| rans-1,3-Dichloropropene         | ND          | ug/m3    | 0.050        | 0.013     | EPA-TO-15-SIM | ND         |              | 2   |
| ,1-Difluoroethane                | 0.76        | ug/m3    | 5.0          | 0.0027    | EPA-TO-15-SIM | ND         | J            | 2   |
| Ethylbenzene                     | 0.54        | ug/m3    | 0.050        | 0.017     | EPA-TO-15-SIM | ND         |              | 2   |
| lethylene chloride               | ND          | ug/m3    | 0.20         | 0.0077    | EPA-TO-15-SIM | ND         |              | 2   |
| etrachloroethene                 | ND          | ug/m3    | 0.10         | 0.011     | EPA-TO-15-SIM | ND         |              | 2   |
| oluene                           | 2.4         | ug/m3    | 0.50         | 0.031     | EPA-TO-15-SIM | ND         | A01          | 1   |
| ,1,1-Trichloroethane             | ND          | ug/m3    | 0.10         | 0.0055    | EPA-TO-15-SIM | ND         |              | 2   |
| ,1,2-Trichloroethane             | ND          | ug/m3    | 0.10         | 0.0055    | EPA-TO-15-SIM | ND         |              | 2   |
| richloroethene                   | 3.7         | ug/m3    | 0.50         | 0.048     | EPA-TO-15-SIM | ND         | A01          | 1   |
| richlorofluoromethane            | 1.3         | ug/m3    | 0.050        | 0.0057    | EPA-TO-15-SIM | ND         |              | 2   |
| ,1,2-Trichloro-1,2,2-trifluoroet | hane 0.58   | ug/m3    | 0.10         | 0.0078    | EPA-TO-15-SIM | ND         |              | 2   |
| /inyl chloride                   | ND          | ug/m3    | 0.020        | 0.0046    | EPA-TO-15-SIM | ND         |              | 2   |
| - & m-Xylenes                    | 1.9         | ug/m3    | 0.050        | 0.0082    | EPA-TO-15-SIM | ND         |              | 2   |
| o-Xylene                         | 0.69        | ug/m3    | 0.050        | 0.0044    | EPA-TO-15-SIM | ND         |              | 2   |
| otal Xylenes                     | 2.6         | ug/m3    | 0.10         | 0.013     | EPA-TO-15-SIM | ND         |              | 2   |
| -Bromofluorobenzene (Surroga     | ate) 89.4   | %        | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM |            |              | 1   |
| -Bromofluorobenzene (Surroga     | ate) 108    | %        | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM |            |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

An results nated in this report are not in exclusive use of the submitting party. The Analytean assames to responsibility to report are and in exclusive use of the submitting party. The Analytean assames to responsibility to report are and in exclusive use of the submitting party. The Analytean assames to responsibility to report are and in exclusive use of the submitting party. The Analytean assames to responsibility to report are advected as a submitting party of the submitting party. The Analytean assames to responsibility to report are advected as a submitting party of the submitting party. The Analytean assames to responsibility to report are advected as a submitting party of the submitti



Reported: 05/10/2023 15:58 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample I | BCL Sample ID: 2308087-10 |                | Client Sample Name: AA-PW3-2023 |         |            | 30419, 4/20/2023 11:05:00AM, Client |          |           |  |
|--------------|---------------------------|----------------|---------------------------------|---------|------------|-------------------------------------|----------|-----------|--|
|              |                           | -              | Run                             |         |            |                                     | QC       |           |  |
| DCN          | Method                    | Prep Date      | Date/Time                       | Analyst | Instrument | Dilution                            | Batch ID |           |  |
| 1            | EPA-TO-15-SIM             | 04/25/23 13:30 | 04/26/23 19:14                  | BEP     | MS-A2      | 5                                   | B164877  | EPA TO-15 |  |
| 2            | EPA-TO-15-SIM             | 04/25/23 13:30 | 04/26/23 08:36                  | BEP     | MS-A2      | 1                                   | B164877  | EPA TO-15 |  |



Reported: 05/10/2023 15:58 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308087-10 | Client Sampl | Client Sample Name: AA-PW3-20230419, 4/20/2023 11:05:00AM, Client |     |     |            |            |              |     |
|----------------|------------|--------------|-------------------------------------------------------------------|-----|-----|------------|------------|--------------|-----|
| Constituent    |            | Result       | Units                                                             | PQL | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | ND           | ppmv                                                              | 2.0 | 1.8 | ASTM-D1946 | ND         |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/01/23 08:02 | 05/01/23 21:32 | RMK     | GC-A1      | 1        | B165241  | No Prep     |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2308              | Client Samp | le Name: | AA-710/1     | AA-710/10-20230419, 4/20/2023 10:35:00AM, Client |               |            |              |     |  |
|----------------------------------|-------------|----------|--------------|--------------------------------------------------|---------------|------------|--------------|-----|--|
| Constituent                      | Result      | Units    | PQL          | MDL                                              | Method        | MB<br>Bias | Lab<br>Quals | DCN |  |
| Acetone                          | 7.3         | ug/m3    | 5.0          | 0.038                                            | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| Benzene                          | 1.4         | ug/m3    | 0.050        | 0.0032                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Benzyl chloride                  | ND          | ug/m3    | 0.50         | 0.0052                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Carbon tetrachloride             | ND          | ug/m3    | 0.20         | 0.0063                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chlorobenzene                    | ND          | ug/m3    | 0.10         | 0.0079                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chloroform                       | ND          | ug/m3    | 0.050        | 0.0058                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dibromoethane                | ND          | ug/m3    | 0.20         | 0.014                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| ,2-Dichlorobenzene               | ND          | ug/m3    | 0.20         | 0.011                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| ,3-Dichlorobenzene               | ND          | ug/m3    | 0.20         | 0.013                                            | EPA-TO-15-SIM | ND         | V11          | 2   |  |
| 1,4-Dichlorobenzene              | ND          | ug/m3    | 0.20         | 0.016                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| Dichlorodifluoromethane          | 2.0         | ug/m3    | 0.050        | 0.0052                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| ,1-Dichloroethane                | ND          | ug/m3    | 0.050        | 0.0041                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| ,2-Dichloroethane                | ND          | ug/m3    | 0.10         | 0.0046                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| ,1-Dichloroethene                | ND          | ug/m3    | 0.050        | 0.0078                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| is-1,2-Dichloroethene            | ND          | ug/m3    | 0.050        | 0.0044                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| rans-1,2-Dichloroethene          | ND          | ug/m3    | 0.050        | 0.0075                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| rans-1,3-Dichloropropene         | ND          | ug/m3    | 0.050        | 0.013                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| ,1-Difluoroethane                | 0.78        | ug/m3    | 5.0          | 0.0027                                           | EPA-TO-15-SIM | ND         | J            | 2   |  |
| Ethylbenzene                     | 0.65        | ug/m3    | 0.050        | 0.017                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| Aethylene chloride               | ND          | ug/m3    | 0.20         | 0.0077                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| etrachloroethene                 | ND          | ug/m3    | 0.10         | 0.011                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| oluene                           | 2.6         | ug/m3    | 0.50         | 0.031                                            | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| 1,1,1-Trichloroethane            | ND          | ug/m3    | 0.10         | 0.0055                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1,2-Trichloroethane            | ND          | ug/m3    | 0.10         | 0.0055                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| richloroethene                   | 2.2         | ug/m3    | 0.10         | 0.0095                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| richlorofluoromethane            | 1.2         | ug/m3    | 0.050        | 0.0057                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| ,1,2-Trichloro-1,2,2-trifluoroet | hane 0.57   | ug/m3    | 0.10         | 0.0078                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| /inyl chloride                   | ND          | ug/m3    | 0.020        | 0.0046                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| - & m-Xylenes                    | 2.3         | ug/m3    | 0.050        | 0.0082                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| o-Xylene                         | 0.90        | ug/m3    | 0.050        | 0.0044                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Fotal Xylenes                    | 3.2         | ug/m3    | 0.10         | 0.013                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| I-Bromofluorobenzene (Surroga    | ate) 92.5   | %        | 50 - 150 (LC | L - UCL)                                         | EPA-TO-15-SIM |            |              | 1   |  |
| I-Bromofluorobenzene (Surroga    | ate) 109    | %        | 50 - 150 (LC | L - UCL)                                         | EPA-TO-15-SIM |            |              | 2   |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 05/10/2023 15:58 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2308087-11    | Client San     | Client Sample Name: AA-710/10-20230419, 4 |         |            |          | 19, 4/20/2023 10:35:00AM, Client |           |  |  |
|---------------|---------------|----------------|-------------------------------------------|---------|------------|----------|----------------------------------|-----------|--|--|
|               |               |                | Run                                       |         |            |          | QC                               |           |  |  |
| DCN           | Method        | Prep Date      | Date/Time                                 | Analyst | Instrument | Dilution | Batch ID                         |           |  |  |
| 1             | EPA-TO-15-SIM | 04/25/23 13:30 | 04/26/23 19:51                            | BEP     | MS-A2      | 5        | B164877                          | EPA TO-15 |  |  |
| 2             | EPA-TO-15-SIM | 04/25/23 13:30 | 04/26/23 09:21                            | BEP     | MS-A2      | 1        | B164877                          | EPA TO-15 |  |  |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308087-11 | Client Sample Name: AA-710/10-20230419, 4/20/2023 10:35:00AM, Client |       |     |     |            |            | ent          |     |
|----------------|------------|----------------------------------------------------------------------|-------|-----|-----|------------|------------|--------------|-----|
| Constituent    |            | Result                                                               | Units | PQL | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | ND                                                                   | ppmv  | 2.0 | 1.8 | ASTM-D1946 | ND         |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/01/23 08:02 | 05/01/23 21:53 | RMK     | GC-A1      | 1        | B165241  | No Prep     |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Method Blank Analysis**

| Constituent                           | QC Sample ID | MB Result | Units | PQL     | MDL           | Lab Quals | Run # |
|---------------------------------------|--------------|-----------|-------|---------|---------------|-----------|-------|
| QC Batch ID: B164877                  |              |           |       |         |               |           |       |
| Acetone                               | B164877-BLK1 | ND        | ug/m3 | 1.0     | 0.0075        |           | 1     |
| Benzene                               | B164877-BLK1 | ND        | ug/m3 | 0.050   | 0.0032        |           | 1     |
| Benzyl chloride                       | B164877-BLK1 | ND        | ug/m3 | 0.50    | 0.0052        |           | 1     |
| Carbon tetrachloride                  | B164877-BLK1 | ND        | ug/m3 | 0.20    | 0.0063        |           | 1     |
| Chlorobenzene                         | B164877-BLK1 | ND        | ug/m3 | 0.10    | 0.0079        |           | 1     |
| Chloroform                            | B164877-BLK1 | ND        | ug/m3 | 0.050   | 0.0058        |           | 1     |
| 1,2-Dibromoethane                     | B164877-BLK1 | ND        | ug/m3 | 0.20    | 0.014         |           | 1     |
| 1,2-Dichlorobenzene                   | B164877-BLK1 | ND        | ug/m3 | 0.20    | 0.011         |           | 1     |
| 1,3-Dichlorobenzene                   | B164877-BLK1 | ND        | ug/m3 | 0.20    | 0.013         |           | 1     |
| 1,4-Dichlorobenzene                   | B164877-BLK1 | ND        | ug/m3 | 0.20    | 0.016         |           | 1     |
| Dichlorodifluoromethane               | B164877-BLK1 | ND        | ug/m3 | 0.050   | 0.0052        |           | 1     |
| 1,1-Dichloroethane                    | B164877-BLK1 | ND        | ug/m3 | 0.050   | 0.0041        |           | 1     |
| 1,2-Dichloroethane                    | B164877-BLK1 | ND        | ug/m3 | 0.10    | 0.0046        |           | 1     |
| 1,1-Dichloroethene                    | B164877-BLK1 | ND        | ug/m3 | 0.050   | 0.0078        |           | 1     |
| cis-1,2-Dichloroethene                | B164877-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 1     |
| trans-1,2-Dichloroethene              | B164877-BLK1 | ND        | ug/m3 | 0.050   | 0.0075        |           | 1     |
| trans-1,3-Dichloropropene             | B164877-BLK1 | ND        | ug/m3 | 0.050   | 0.013         |           | 1     |
| 1,1-Difluoroethane                    | B164877-BLK1 | ND        | ug/m3 | 5.0     | 0.0027        |           | 1     |
| Ethylbenzene                          | B164877-BLK1 | ND        | ug/m3 | 0.050   | 0.017         |           | 1     |
| Methylene chloride                    | B164877-BLK1 | ND        | ug/m3 | 0.20    | 0.0077        |           | 1     |
| Tetrachloroethene                     | B164877-BLK1 | ND        | ug/m3 | 0.10    | 0.011         |           | 1     |
| Toluene                               | B164877-BLK1 | ND        | ug/m3 | 0.10    | 0.0062        |           | 1     |
| 1,1,1-Trichloroethane                 | B164877-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 1     |
| 1,1,2-Trichloroethane                 | B164877-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 1     |
| Trichloroethene                       | B164877-BLK1 | ND        | ug/m3 | 0.10    | 0.0095        |           | 1     |
| Trichlorofluoromethane                | B164877-BLK1 | ND        | ug/m3 | 0.050   | 0.0057        |           | 1     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | B164877-BLK1 | ND        | ug/m3 | 0.10    | 0.0078        |           | 1     |
| Vinyl chloride                        | B164877-BLK1 | ND        | ug/m3 | 0.020   | 0.0046        |           | 1     |
| p- & m-Xylenes                        | B164877-BLK1 | ND        | ug/m3 | 0.050   | 0.0082        |           | 1     |
| o-Xylene                              | B164877-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 1     |
| Total Xylenes                         | B164877-BLK1 | ND        | ug/m3 | 0.10    | 0.013         |           | 1     |
| 4-Bromofluorobenzene (Surrogate)      | B164877-BLK1 | 62.3      | %     | 50 - 15 | 0 (LCL - UCL) |           | 1     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

1001423799 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Method Blank Analysis**

| Run # | QC Sample ID | QC Type | Method        | Prep Date | Run<br>Date Time | Analyst | Instrument | Dilution |
|-------|--------------|---------|---------------|-----------|------------------|---------|------------|----------|
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |
| 1     | B164877-BLK1 | PB      | EPA-TO-15-SIM | 04/25/23  | 04/25/23 22:25   | BEP     | MS-A2      | 1        |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11423799 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001423799



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

|                        |              |      | •       |         | -     |          | •    |                      |       |       |       |
|------------------------|--------------|------|---------|---------|-------|----------|------|----------------------|-------|-------|-------|
|                        |              |      |         |         |       |          |      | Control I            | imits |       |       |
|                        |              |      |         | Spike   |       | Percent  |      | Percent              |       | Lab   |       |
| Constituent            | QC Sample ID | Туре | Result  | Level   | Units | Recovery | RPD  | Recovery             | RPD   | Quals | Run # |
| QC Batch ID: B164877   |              |      |         |         |       |          |      |                      |       |       |       |
| Benzene                | B164877-BS1  | LCS  | 0.25820 | 0.31948 | ug/m3 | 80.8     |      | 70 - 130             |       |       | 1     |
|                        | B164877-BSD1 | LCSD | 0.26753 | 0.31948 | ug/m3 | 83.7     | 3.5  | 70 - 130             | 30    |       | 2     |
| Benzyl chloride        | B164877-BS1  | LCS  | 0.52549 | 0.51772 | ug/m3 | 102      |      | 70 - 130             |       |       | 1     |
|                        | B164877-BSD1 | LCSD | 0.61014 | 0.51772 | ug/m3 | 118      | 14.9 | 70 - 130             | 30    |       | 2     |
| Carbon tetrachloride   | B164877-BS1  | LCS  | 0.62240 | 0.62913 | ug/m3 | 98.9     |      | 70 - 130             |       |       | 1     |
|                        | B164877-BSD1 | LCSD | 0.64102 | 0.62913 | ug/m3 | 102      | 2.9  | 70 - 130             | 30    |       | 2     |
| Chlorobenzene          | B164877-BS1  | LCS  | 0.50105 | 0.46036 | ug/m3 | 109      |      | 70 - 130             |       |       | 1     |
|                        | B164877-BSD1 | LCSD | 0.50450 | 0.46036 | ug/m3 | 110      | 0.7  | 70 - 130             | 30    |       | 2     |
| Chloroform             | B164877-BS1  | LCS  | 0.50520 | 0.48825 | ug/m3 | 103      |      | 70 - 130             |       |       | 1     |
|                        | B164877-BSD1 | LCSD | 0.51447 | 0.48825 | ug/m3 | 105      | 1.8  | 70 - 130             | 30    |       | 2     |
| 1,2-Dibromoethane      | B164877-BS1  | LCS  | 0.89620 | 0.76835 | ug/m3 | 117      |      | 70 - 130             |       |       | 1     |
| ,                      | B164877-BSD1 | LCSD | 0.92010 | 0.76835 | ug/m3 | 120      | 2.6  | 70 - 130             | 30    |       | 2     |
| 1,2-Dichlorobenzene    | B164877-BS1  | LCS  | 0.65036 | 0.60124 | ug/m3 | 108      |      | 70 - 130             |       |       | 1     |
| ,                      | B164877-BSD1 | LCSD | 0.71607 | 0.60124 | ug/m3 | 119      | 9.6  | 70 - 130             | 30    |       | 2     |
| 1,3-Dichlorobenzene    | B164877-BS1  | LCS  | 0.69749 | 0.60124 | ug/m3 | 116      |      | 70 - 130             |       |       | 1     |
| .,                     | B164877-BSD1 | LCSD | 0.77078 | 0.60124 | ug/m3 | 128      | 10.0 | 70 - 130             | 30    |       | 2     |
| 1,4-Dichlorobenzene    | B164877-BS1  | LCS  | 0.68998 | 0.60124 | ug/m3 | 115      |      | 70 - 130             |       |       | 1     |
| .,                     | B164877-BSD1 | LCSD | 0.77427 | 0.60124 | ug/m3 | 129      | 11.5 | 70 - 130             | 30    |       | 2     |
| 1,1-Dichloroethane     | B164877-BS1  | LCS  | 0.39964 | 0.40474 | ug/m3 | 98.7     |      | 70 - 130             |       |       | 1     |
| ,                      | B164877-BSD1 | LCSD | 0.41122 | 0.40474 | ug/m3 | 102      | 2.9  | 70 - 130             | 30    |       | 2     |
| 1,2-Dichloroethane     | B164877-BS1  | LCS  | 0.38782 | 0.40474 | ug/m3 | 95.8     |      | 70 - 130             |       |       | 1     |
| ,                      | B164877-BSD1 | LCSD | 0.39818 | 0.40474 | ug/m3 | 98.4     | 2.6  | 70 - 130             | 30    |       | 2     |
| 1,1-Dichloroethene     | B164877-BS1  | LCS  | 0.33524 | 0.39649 | ug/m3 | 84.6     |      | 70 - 130             |       |       | 1     |
| ,                      | B164877-BSD1 | LCSD | 0.35209 | 0.39649 | ug/m3 | 88.8     | 4.9  | 70 - 130             | 30    |       | 2     |
| cis-1,2-Dichloroethene | B164877-BS1  | LCS  | 0.33472 | 0.39649 | ug/m3 | 84.4     |      | 70 - 130             |       |       | 1     |
|                        | B164877-BSD1 | LCSD | 0.34463 | 0.39649 | ug/m3 | 86.9     | 2.9  | 70 - 130             | 30    |       | 2     |
| Methylene chloride     | B164877-BS1  | LCS  | 0.36954 | 0.34737 | ug/m3 | 106      |      | 70 - 130             |       |       | 1     |
|                        | B164877-BSD1 | LCSD | 0.38715 | 0.34737 | ug/m3 | 111      | 4.7  | 70 - 130             | 30    |       | 2     |
| Tetrachloroethene      | B164877-BS1  | LCS  | 0.78250 | 0.67825 | ug/m3 | 115      |      | 70 - 130             |       |       | 1     |
|                        | B164877-BSD1 | LCSD | 0.80047 | 0.67825 | ug/m3 | 118      | 2.3  | 70 - 130             | 30    |       | 2     |
| Toluene                | B164877-BS1  | LCS  | 0.37537 | 0.37684 | ug/m3 | 99.6     |      | 70 - 130             |       |       | 1     |
|                        | B164877-BSD1 | LCSD | 0.37628 | 0.37684 | ug/m3 | 99.8     | 0.2  | 70 - 130             | 30    |       | 2     |
| 1,1,1-Trichloroethane  | B164877-BS1  | LCS  | 0.53804 | 0.54562 | ug/m3 | 98.6     |      | 70 - 130             |       |       | 1     |
| .,.,                   | B164877-BSD1 | LCSD | 0.55670 | 0.54562 | ug/m3 | 102      | 3.4  | 70 - 130             | 30    |       | 2     |
| 1,1,2-Trichloroethane  | B164877-BS1  | LCS  | 0.68333 | 0.54562 | ug/m3 | 125      |      | 70 - 130             |       |       | 1     |
|                        | B164877-BSD1 | LCS  | 0.70036 | 0.54562 | ug/m3 | 123      | 2.5  | 70 - 130<br>70 - 130 | 30    |       | 2     |
|                        |              | 2000 |         |         | -3    |          |      |                      |       |       |       |

#### **Quality Control Report - Laboratory Control Sample**

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 1423799 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001423799



# Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

#### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

|              |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                      | Control I                                                                                                                                                                                                                                                                                                                                                                                                                                            | imits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                      | Percent                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| QC Sample ID | Туре                                                                                                                                                                                        | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RPD                                                                                                                                                                                                                                                                                                                                                                                                                  | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                             | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Run #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B164877-BS1  | LCS                                                                                                                                                                                         | 0.60702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.53737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| B164877-BSD1 | LCSD                                                                                                                                                                                        | 0.62325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.53737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                  | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| B164877-BS1  | LCS                                                                                                                                                                                         | 0.28417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.25562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| B164877-BSD1 | LCSD                                                                                                                                                                                        | 0.27100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.25562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                  | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| B164877-BS1  | LCS                                                                                                                                                                                         | 0.90555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.86843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| B164877-BSD1 | LCSD                                                                                                                                                                                        | 0.94888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.86843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                  | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| B164877-BS1  | LCS                                                                                                                                                                                         | 0.40890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.43421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                      | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| B164877-BSD1 | LCSD                                                                                                                                                                                        | 0.42457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.43421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                  | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| B164877-BS1  | LCS                                                                                                                                                                                         | 1.3144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.3026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| B164877-BSD1 | LCSD                                                                                                                                                                                        | 1.3735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.3026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                  | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| B164877-BS1  | LCS                                                                                                                                                                                         | 3.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| B164877-BSD1 | LCSD                                                                                                                                                                                        | 3.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                  | 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | B164877-BS1<br>B164877-BSD1<br>B164877-BSD1<br>B164877-BSD1<br>B164877-BSD1<br>B164877-BSD1<br>B164877-BSD1<br>B164877-BSD1<br>B164877-BSD1<br>B164877-BSD1<br>B164877-BSD1<br>B164877-BSD1 | B164877-BS1         LCS           B164877-BS1         LCSD           B164877-BS1         LCS           B164877-BS1         LCSD           B164877-BS1         LCSD | B164877-BS1         LCS         0.60702           B164877-BSD1         LCSD         0.62325           B164877-BS1         LCS         0.28417           B164877-BS1         LCSD         0.27100           B164877-BS1         LCSD         0.27100           B164877-BS1         LCS         0.90555           B164877-BS1         LCSD         0.94888           B164877-BS1         LCSD         0.40890           B164877-BS1         LCSD         0.42457           B164877-BS1         LCS         1.3144           B164877-BS1         LCSD         1.3735           B164877-BS1         LCSD         3.69 | QC Sample ID         Type         Result         Level           B164877-BS1         LCS         0.60702         0.53737           B164877-BSD1         LCSD         0.62325         0.53737           B164877-BSD1         LCSD         0.28417         0.25562           B164877-BS1         LCSD         0.27100         0.25562           B164877-BS1         LCSD         0.90555         0.86843           B164877-BS1         LCSD         0.94888         0.86843           B164877-BS1         LCSD         0.42457         0.43421           B164877-BS1         LCS         1.3144         1.3026           B164877-BS11         LCSD         1.3735         1.3026           B164877-BS11         LCSD         3.69         3.58 | QC Sample ID         Type         Result         Level         Units           B164877-BS1         LCS         0.60702         0.53737         ug/m3           B164877-BSD1         LCS         0.62325         0.53737         ug/m3           B164877-BSD1         LCS         0.28417         0.25562         ug/m3           B164877-BS1         LCS         0.27100         0.25562         ug/m3           B164877-BS1         LCS         0.90555         0.86843         ug/m3           B164877-BS1         LCS         0.40890         0.43421         ug/m3           B164877-BS1         LCS         0.42457         0.43421         ug/m3           B164877-BS1         LCS         1.3144         1.3026         ug/m3           B164877-BSD1         LCS         1.3735         1.3026         ug/m3           B164877-BSD1         LCS         1.3735         1.3026         ug/m3           B164877-BSD1         LCS         1.3735         1.3026         ug/m3           B164877-BSD1         LCS         3.69         3.58         ug/m3 | QC Sample IDTypeResultLevelUnitsRecoveryB164877-BS1LCS0.607020.53737ug/m3113B164877-BSD1LCSD0.623250.53737ug/m3116B164877-BS11LCS0.284170.25562ug/m3111B164877-BS11LCS0.271000.25562ug/m3106B164877-BS11LCS0.905550.86843ug/m3104B164877-BS11LCS0.905550.86843ug/m3109B164877-BS11LCS0.408900.43421ug/m394.2B164877-BS11LCS0.424570.43421ug/m397.8B164877-BS11LCS1.31441.3026ug/m3101B164877-BS11LCS3.693.58ug/m3103 | QC Sample IDTypeResultLevelUnitsRecoveryRPDB164877-BS1LCS0.607020.53737ug/m3113B164877-BSD1LCSD0.623250.53737ug/m31162.6B164877-BS1LCS0.284170.25562ug/m31111162.6B164877-BS1LCSD0.271000.25562ug/m31064.7B164877-BS1LCS0.905550.86843ug/m31041094.7B164877-BS1LCS0.408900.43421ug/m394.21094.7B164877-BS1LCS0.424570.43421ug/m394.23.8B164877-BS1LCS1.31441.3026ug/m31014.4B164877-BS11LCS1.37351.3026ug/m31034.4B164877-BS11LCS3.693.58ug/m3103103 | QC Sample IDTypeResultSpike<br>LevelUnitsPercent<br>RecoveryPercent<br>RepB164877-BS1LCS0.607020.53737ug/m311370 - 130B164877-BS1LCS0.623250.53737ug/m31162.670 - 130B164877-BS1LCS0.284170.25562ug/m311170 - 130B164877-BS1LCS0.271000.25562ug/m31064.770 - 130B164877-BS1LCS0.905550.86843ug/m310470 - 130B164877-BS1LCS0.948880.86843ug/m31094.770 - 130B164877-BS1LCS0.408900.43421ug/m394.270 - 130B164877-BS1LCS1.31441.3026ug/m310170 - 130B164877-BS1LCS1.37351.3026ug/m310350 - 150B164877-BS1LCS3.693.58ug/m310350 - 150 | QC Sample IDTypeResultSpike<br>LevelUnitsPercent<br>RecoveryPercent<br>RPDPercent<br>RecoveryRPDB164877-BS1LCS0.607020.53737ug/m311370 - 130B164877-BS11LCSD0.623250.53737ug/m31162.670 - 130B164877-BS11LCS0.284170.25562ug/m311170 - 13030B164877-BS11LCS0.271000.25562ug/m31064.770 - 13030B164877-BS11LCS0.905550.86843ug/m310470 - 13030B164877-BS11LCS0.905550.86843ug/m310470 - 13030B164877-BS11LCS0.408900.43421ug/m394.270 - 13030B164877-BS11LCS0.408900.43421ug/m397.83.870 - 13030B164877-BS11LCS1.31441.3026ug/m310170 - 13030B164877-BS11LCS1.31441.3026ug/m310170 - 13030B164877-BS11LCS1.37351.3026ug/m310170 - 13030B164877-BS11LCS3.693.58ug/m310350 - 15010 | QC Sample IDTypeResultLevelUnitsRecoveryRPDRecoveryRPDQualsB164877-BS1LCS0.607020.53737ug/m311370 - 13030B164877-BS1LCS0.623250.53737ug/m31162.670 - 13030B164877-BS1LCS0.284170.25562ug/m311170 - 13030B164877-BS1LCS0.271000.25562ug/m31064.770 - 13030B164877-BS1LCS0.905550.86843ug/m310470 - 13030-B164877-BS1LCS0.905550.86843ug/m310470 - 13030-B164877-BS1LCS0.905550.43621ug/m31094.770 - 13030-B164877-BS1LCS0.408900.43421ug/m394.270 - 13030-B164877-BS1LCS0.424570.43421ug/m397.83.870 - 13030B164877-BS1LCS1.31441.3026ug/m310170 - 13030B164877-BS1LCS1.37351.3026ug/m310350 - 150-B164877-BS1LCS3.693.58ug/m310350 - 150- |

#### **Quality Control Report - Laboratory Control Sample**



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

#### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Laboratory Control Sample**

| Run # | QC Sample ID | QC Type | Method        | Prep Date | Run<br>Date Time | Analyst | Instrument | Dilution |
|-------|--------------|---------|---------------|-----------|------------------|---------|------------|----------|
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 1     | B164877-BS1  | LCS     | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:10   | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50   | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50   | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50   | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50   | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50   | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50   | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50   | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50   | BEP     | MS-A2      | 1        |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11423799 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001423799



Reported: 05/10/2023 15:58 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

#### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Laboratory Control Sample**

|       |              |         |               |           | Run            |         |            |          |
|-------|--------------|---------|---------------|-----------|----------------|---------|------------|----------|
| Run # | QC Sample ID | QC Type | Method        | Prep Date | Date Time      | Analyst | Instrument | Dilution |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50 | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50 | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50 | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50 | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50 | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50 | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50 | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50 | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50 | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50 | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50 | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50 | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50 | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50 | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50 | BEP     | MS-A2      | 1        |
| 2     | B164877-BSD1 | LCSD    | EPA-TO-15-SIM | 04/25/23  | 04/25/23 21:50 | BEP     | MS-A2      | 1        |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

#### Fixed Gases by GC/TCD (ASTM D1946)

#### **Quality Control Report - Method Blank Analysis**

|              |                |         | •            | •         |                |         | •          |         |           |       |
|--------------|----------------|---------|--------------|-----------|----------------|---------|------------|---------|-----------|-------|
| Constituent  |                |         | QC Sample ID | MB Result | Units          | PC      | λΓ         | MDL     | Lab Quals | Run # |
| QC Bat       | ch ID: B165213 |         |              |           |                |         |            |         |           |       |
| Methane (CH4 | 4)             |         | B165213-BLK1 | ND        | ppmv           | 2       | .0         | 1.8     |           | 1     |
| QC Bat       | ch ID: B165241 |         |              |           |                |         |            |         |           |       |
| Methane (CH4 | 4)             |         | B165241-BLK1 | ND        | ppmv           | 2       | .0         | 1.8     |           | 2     |
|              |                |         |              |           | Run            |         |            |         |           |       |
| Run #        | QC Sample ID   | QC Type | Method       | Prep Date | Date Time      | Analyst | Instrument | Dilutio | n         |       |
| 1            | B165213-BLK1   | PB      | ASTM-D1946   | 05/01/23  | 05/01/23 14:08 | RMK     | GC-A1      | 1       |           |       |
| 2            | B165241-BLK1   | PB      | ASTM-D1946   | 05/02/23  | 05/01/23 19:11 | RMK     | GC-A1      | 1       |           |       |
|              |                |         |              |           |                |         |            |         |           |       |



Reported:05/10/202315:58Project:City TerraceProject Number:2855Project Manager:April McGuire

#### Fixed Gases by GC/TCD (ASTM D1946)

#### **Quality Control Report - Laboratory Control Sample**

|                      |              |      |        |                |       |                     |     | Control I           | Limits |              |       |
|----------------------|--------------|------|--------|----------------|-------|---------------------|-----|---------------------|--------|--------------|-------|
| Constituent          | QC Sample ID | Туре | Result | Spike<br>Level | Units | Percent<br>Recovery | RPD | Percent<br>Recovery | RPD    | Lab<br>Quals | Run # |
| QC Batch ID: B165213 |              |      |        |                |       |                     |     |                     |        |              |       |
| Methane (CH4)        | B165213-BS1  | LCS  | 20026  | 18000          | ppmv  | 111                 |     | 70 - 130            |        |              | 1     |
|                      | B165213-BSD1 | LCSD | 19976  | 18000          | ppmv  | 111                 | 0.3 | 70 - 130            | 30     |              | 2     |
| QC Batch ID: B165241 |              |      |        |                |       |                     |     |                     |        |              |       |
| Methane (CH4)        | B165241-BS1  | LCS  | 18638  | 18000          | ppmv  | 104                 |     | 70 - 130            |        |              | 3     |
|                      | B165241-BSD1 | LCSD | 18600  | 18000          | ppmv  | 103                 | 0.2 | 70 - 130            | 30     |              | 4     |

|       |              |         |            |           | Run            |         |            |          |
|-------|--------------|---------|------------|-----------|----------------|---------|------------|----------|
| Run # | QC Sample ID | QC Type | Method     | Prep Date | Date Time      | Analyst | Instrument | Dilution |
| 1     | B165213-BS1  | LCS     | ASTM-D1946 | 05/01/23  | 05/01/23 13:28 | RMK     | GC-A1      | 1        |
| 2     | B165213-BSD1 | LCSD    | ASTM-D1946 | 05/01/23  | 05/01/23 13:48 | RMK     | GC-A1      | 1        |
| 3     | B165241-BS1  | LCS     | ASTM-D1946 | 05/02/23  | 05/01/23 18:31 | RMK     | GC-A1      | 1        |
| 4     | B165241-BSD1 | LCSD    | ASTM-D1946 | 05/02/23  | 05/01/23 18:51 | RMK     | GC-A1      | 1        |



#### Reported: 05/10/2023 15:58 Project: City Terrace Project Number: 2855 Project Manager: April McGuire

#### **Notes And Definitions**

| J   | Estimated Value (CLP Flag) |
|-----|----------------------------|
| MDL | Method Detection Limit     |
| ND  | Analyte Not Detected       |

- Analyte Not Detected
- Practical Quantitation Limit PQL
- A01 Detection and quantitation limits are raised due to sample dilution.
- V11 The Continuing Calibration Verification (CCV) recovery was not within established control limits.



Date of Report: 05/10/2023

April McGuire

Roux Associates, Inc -Long Beach 5150 E. Pacific Coast Hwy, Suite 450 Long Beach, CA 90804

Client Project:36908BCL Project:City TerraceBCL Work Order:2308332Invoice ID:B475571

Enclosed are the results of analyses for samples received by the laboratory on 4/27/2023. If you have any questions concerning this report, please feel free to contact me.

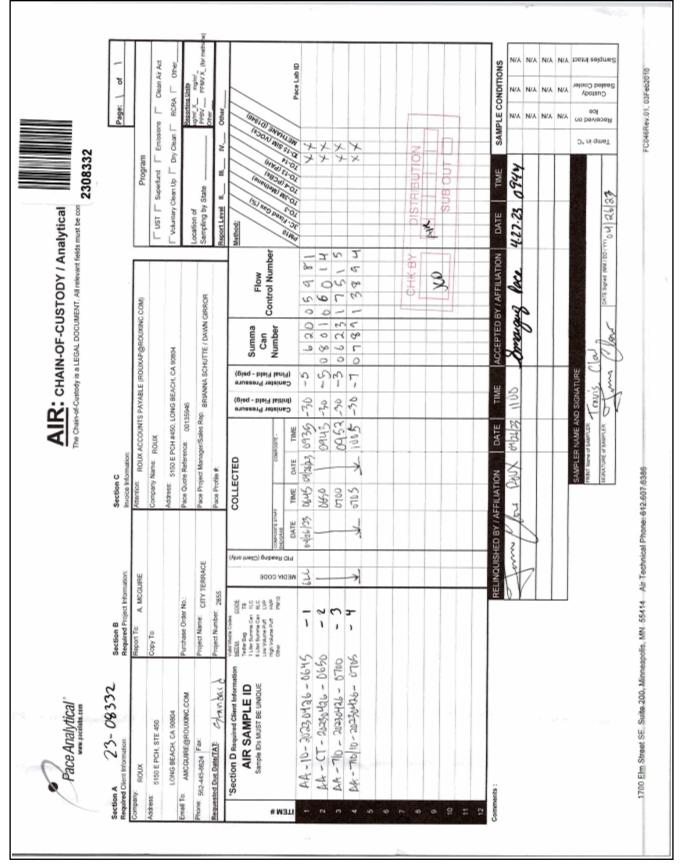
Sincerely,

Contact Person: Brianna Schutte Client Services Rep

A

Stuart Buttram Operations Manager

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101




#### **Table of Contents**

| Sample Information                                            |    |
|---------------------------------------------------------------|----|
| Chain of Custody and Cooler Receipt form                      | 3  |
| Laboratory / Client Sample Cross Reference                    | 5  |
| Sample Results                                                |    |
| 2308332-01 - AA-10-20230426-0645                              |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) | 6  |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2308332-02 - AA-CT-20230426-0650                              |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) | 9  |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2308332-03 - AA-710-20230426-0700                             |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2308332-04 - AA-710/10-20230426-0705                          |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| Quality Control Reports                                       |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Method Blank Analysis                                         |    |
| Laboratory Control Sample                                     |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| Method Blank Analysis                                         |    |
| Laboratory Control Sample                                     |    |
| Notes                                                         |    |
| Notes and Definitions                                         | 26 |
|                                                               | 20 |



#### Chain of Custody and Cooler Receipt Form for 2308332 Page 1 of 2



The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



#### Chain of Custody and Cooler Receipt Form for 2308332 Page 2 of 2

| Pace Lab Field Service  C Refrigerant: Ice  Blue Ice |                           | N<br>Hand Deliv     |        | 5     | UDDING    |                           |        | 100      | the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------|---------------------------|---------------------|--------|-------|-----------|---------------------------|--------|----------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      |                           | ecify)              | very D |       | est 🖸     | CONTAI<br>None 🗆<br>clfy) | Box B. |          | FREE LI<br>YES D<br>W /                                                                                         | NO B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                      | el Non                    | e 🖻 🛛 Ot            | iher 🗆 | Comme | nts:      |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Custody Seals Ice Chest                              | Conta<br>Intact? Yes      | iners 🗆<br>s-O.No D | None   | Com   | ments:    |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| All samples received? Yes No D                       |                           |                     |        |       |           | Descript                  |        | -        | COLUMN TWO IS NOT THE OWNER.                                                                                    | A state of the sta |
| COC Received                                         | Emissivity:<br>Temperatur |                     |        |       |           | ter ID:                   |        |          | me <u>4.2</u><br>t init <i>SA</i> 4                                                                             | <u>7</u> ·23<br>4_0944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                      |                           |                     |        |       | > SAMPL   | E NUMBERS                 |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLE CONTAINERS                                    | 1                         | 2                   | 1 3    | 4     | 5         | 6                         | 7      | 8        |                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| T PE UNPRES                                          |                           |                     |        |       |           |                           |        | <u> </u> |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ez/Bez/16ez PE UNPRES                                |                           |                     |        |       |           |                           |        | <u> </u> |                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 92 Cr <sup>46</sup>                                  | _                         |                     |        |       |           |                           |        | <u> </u> |                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| T INORGANIC CHEMICAL METALS                          |                           |                     |        |       |           |                           |        | <u> </u> |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NORGANIC CHEMICAL METALS 4oz / 8oz /                 | 160z                      | _                   |        |       |           |                           |        | <u> </u> | -                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| T CYANIDE                                            |                           | •                   |        |       |           |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T NITROGEN FORMS                                     |                           | _                   |        |       |           |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T TOTAL SULFIDE                                      |                           | _                   |        |       |           |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OF, NUTRATE / NUTRITE                                | _                         | _                   |        |       | -         |                           |        | <u> </u> |                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| T TOTAL ORGANIC CARBON                               |                           | _                   |        |       |           |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T CHEMICAL OXYGEN DEMAND                             |                           |                     |        |       |           |                           |        |          | -                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TA PHENOLICS                                         |                           |                     |        |       |           | <u> </u>                  |        |          |                                                                                                                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Om) VOA VIAL TRAVEL BLANK                            |                           |                     |        |       |           |                           |        | <u> </u> |                                                                                                                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0ml VOA VIAL                                         |                           |                     |        | +     | - <u></u> |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T EPA 1664B                                          | _                         |                     |        |       |           | · ·                       |        | <u> </u> |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TODOR                                                |                           |                     |        |       |           |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ADIOLOGICAL                                          |                           |                     |        | +     |           |                           |        | <u> </u> |                                                                                                                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ACTERIOLOGICAL                                       |                           | <u> </u>            |        |       | +         |                           |        |          |                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| I mI VOA VIAL- 504                                   |                           |                     |        |       |           |                           |        | <u> </u> |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T EPA 508/608.3/8081A                                |                           |                     |        | +     |           |                           |        |          | +                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T EPA 515.1/8151A                                    |                           |                     |        |       |           |                           |        |          | +                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T EPA 525.2<br>T EPA 525.2 TRAVEL BLANK              | _                         |                     | 1      | 1     | 1         |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IT EPA 525.2 TRAVEL BLANK                            |                           | _                   | 1      | 1     |           |                           |        |          | -[                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Omi EPA 547                                          | _                         |                     | 1      | 1     | 1         |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mi EPA 548.1                                         |                           |                     |        |       | 1         |                           |        |          | 1                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T EPA 549.2                                          |                           |                     |        | 1     |           |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T EPA 5052                                           |                           | _                   |        |       |           |                           |        |          | 1                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T EPA 8270C                                          |                           |                     |        |       | 1         |                           |        |          | 1                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| r / 16az/32ez AMBER                                  |                           |                     |        |       |           |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| x/160z/J2oz JAR                                      |                           |                     |        |       |           |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OIL SLEEVE                                           |                           |                     |        |       |           |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CBVIAL                                               |                           |                     |        |       |           |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LASTIC BAG                                           |                           |                     |        |       |           |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EDLAR BAG                                            |                           |                     |        |       |           |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ERROUS JRON                                          |                           |                     |        |       |           |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NCORE                                                |                           |                     |        |       |           |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MART KIT                                             |                           |                     |        |       |           | 1                         |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JMMA CANISTER                                        | A                         | 4                   | A      | A     |           |                           |        |          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

#### Laboratory / Client Sample Cross Reference

| Laboratory | Client Sample Informati | on                      |                |                  |
|------------|-------------------------|-------------------------|----------------|------------------|
| 2308332-01 | COC Number:             |                         | Receive Date:  | 04/27/2023 09:44 |
|            | Project Number:         |                         | Sampling Date: | 04/26/2023 09:35 |
|            | Sampling Location:      |                         | Sample Depth:  |                  |
|            | Sampling Point:         | AA-10-20230426-0645     | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                  | Sample Type:   | Vapor or Air     |
| 2308332-02 | COC Number:             |                         | Receive Date:  | 04/27/2023 09:44 |
|            | Project Number:         |                         | Sampling Date: | 04/26/2023 09:43 |
|            | Sampling Location:      |                         | Sample Depth:  |                  |
|            | Sampling Point:         | AA-CT-20230426-0650     | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                  | Sample Type:   | Vapor or Air     |
| 2308332-03 | COC Number:             |                         | Receive Date:  | 04/27/2023 09:44 |
|            | Project Number:         |                         | Sampling Date: | 04/26/2023 09:52 |
|            | Sampling Location:      |                         | Sample Depth:  |                  |
|            | Sampling Point:         | AA-710-20230426-0700    | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                  | Sample Type:   | Vapor or Air     |
| 2308332-04 | COC Number:             |                         | Receive Date:  | 04/27/2023 09:44 |
|            | Project Number:         |                         | Sampling Date: | 04/26/2023 10:05 |
|            | Sampling Location:      |                         | Sample Depth:  |                  |
|            | Sampling Point:         | AA-710/10-20230426-0705 | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                  | Sample Type:   | Vapor or Air     |



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

#### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23              | 08332-01 | Client Sampl | e Name: | AA-10-202    | 230426-064 | 45, 4/26/2023 9:3 | 35:00AM, Cli | ent          |     |
|--------------------------------|----------|--------------|---------|--------------|------------|-------------------|--------------|--------------|-----|
| Constituent                    |          | Result       | Units   | PQL          | MDL        | Method            | MB<br>Bias   | Lab<br>Quals | DCN |
| Acetone                        |          | 56           | ug/m3   | 10           | 0.075      | EPA-TO-15-SIM     | ND           | A01          | 1   |
| Benzene                        |          | 0.85         | ug/m3   | 0.050        | 0.0032     | EPA-TO-15-SIM     | ND           |              | 2   |
| Benzyl chloride                |          | ND           | ug/m3   | 0.50         | 0.0052     | EPA-TO-15-SIM     | ND           |              | 2   |
| Carbon tetrachloride           |          | ND           | ug/m3   | 0.20         | 0.0063     | EPA-TO-15-SIM     | ND           |              | 2   |
| Chlorobenzene                  |          | ND           | ug/m3   | 0.10         | 0.0079     | EPA-TO-15-SIM     | ND           |              | 2   |
| Chloroform                     |          | ND           | ug/m3   | 0.050        | 0.0058     | EPA-TO-15-SIM     | ND           |              | 2   |
| 1,2-Dibromoethane              |          | ND           | ug/m3   | 0.20         | 0.014      | EPA-TO-15-SIM     | ND           |              | 2   |
| ,2-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.011      | EPA-TO-15-SIM     | ND           |              | 2   |
| ,3-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.013      | EPA-TO-15-SIM     | ND           |              | 2   |
| 1,4-Dichlorobenzene            |          | 0.19         | ug/m3   | 0.20         | 0.016      | EPA-TO-15-SIM     | ND           | J            | 2   |
| Dichlorodifluoromethane        |          | 2.7          | ug/m3   | 0.50         | 0.052      | EPA-TO-15-SIM     | ND           | A01          | 1   |
| ,1-Dichloroethane              |          | ND           | ug/m3   | 0.050        | 0.0041     | EPA-TO-15-SIM     | ND           |              | 2   |
| ,2-Dichloroethane              |          | ND           | ug/m3   | 0.10         | 0.0046     | EPA-TO-15-SIM     | ND           |              | 2   |
| ,1-Dichloroethene              |          | ND           | ug/m3   | 0.050        | 0.0078     | EPA-TO-15-SIM     | ND           |              | 2   |
| is-1,2-Dichloroethene          |          | ND           | ug/m3   | 0.050        | 0.0044     | EPA-TO-15-SIM     | ND           |              | 2   |
| rans-1,2-Dichloroethene        |          | ND           | ug/m3   | 0.050        | 0.0075     | EPA-TO-15-SIM     | ND           |              | 2   |
| rans-1,3-Dichloropropene       |          | ND           | ug/m3   | 0.050        | 0.013      | EPA-TO-15-SIM     | ND           |              | 2   |
| ,1-Difluoroethane              |          | 4.5          | ug/m3   | 50           | 0.027      | EPA-TO-15-SIM     | ND           | J,A01        | 1   |
| Ethylbenzene                   |          | 0.43         | ug/m3   | 0.050        | 0.017      | EPA-TO-15-SIM     | ND           |              | 2   |
| lethylene chloride             |          | ND           | ug/m3   | 0.20         | 0.0077     | EPA-TO-15-SIM     | ND           |              | 2   |
| etrachloroethene               |          | ND           | ug/m3   | 0.10         | 0.011      | EPA-TO-15-SIM     | ND           |              | 2   |
| oluene                         |          | 1.9          | ug/m3   | 1.0          | 0.062      | EPA-TO-15-SIM     | ND           | A01          | 1   |
| ,1,1-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055     | EPA-TO-15-SIM     | ND           |              | 2   |
| ,1,2-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055     | EPA-TO-15-SIM     | ND           |              | 2   |
| richloroethene                 |          | ND           | ug/m3   | 0.10         | 0.0095     | EPA-TO-15-SIM     | ND           |              | 2   |
| richlorofluoromethane          |          | 1.4          | ug/m3   | 0.050        | 0.0057     | EPA-TO-15-SIM     | ND           |              | 2   |
| ,1,2-Trichloro-1,2,2-trifluoro | ethane   | 0.60         | ug/m3   | 0.10         | 0.0078     | EPA-TO-15-SIM     | ND           |              | 2   |
| /inyl chloride                 |          | ND           | ug/m3   | 0.020        | 0.0046     | EPA-TO-15-SIM     | ND           |              | 2   |
| - & m-Xylenes                  |          | 1.5          | ug/m3   | 0.050        | 0.0082     | EPA-TO-15-SIM     | ND           |              | 2   |
| o-Xylene                       |          | 0.61         | ug/m3   | 0.050        | 0.0044     | EPA-TO-15-SIM     | ND           |              | 2   |
| otal Xylenes                   |          | 2.1          | ug/m3   | 0.10         | 0.013      | EPA-TO-15-SIM     | ND           |              | 2   |
| -Bromofluorobenzene (Surro     | ogate)   | 92.7         | %       | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM     |              |              | 1   |
| I-Bromofluorobenzene (Surro    | ogate)   | 106          | %       | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM     |              |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

An results fisted in this report are not the exclusive use of the submitting party. Face Analytical assumes no responsionity for report and ration, separation, detachment 001423656 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2308332-01 |               | Client San     | nple Name:     | AA-10-202304 | 426-0645, 4/26/2 | 26-0645, 4/26/2023 9:35:00AM, Client |          |           |  |  |
|---------------------------|---------------|----------------|----------------|--------------|------------------|--------------------------------------|----------|-----------|--|--|
|                           |               | -              | Run            |              |                  |                                      | QC       |           |  |  |
| DCN                       | Method        | Prep Date      | Date/Time      | Analyst      | Instrument       | Dilution                             | Batch ID |           |  |  |
| 1                         | EPA-TO-15-SIM | 05/05/23 12:29 | 05/08/23 18:05 | BEP          | MS-A1            | 10                                   | B165619  | EPA TO-15 |  |  |
| 2                         | EPA-TO-15-SIM | 05/05/23 12:29 | 05/08/23 18:43 | BEP          | MS-A1            | 1                                    | B165619  | EPA TO-15 |  |  |



Reported:05/10/2023 11:03Project:City TerraceProject Number:36908Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308332-01 | Client Sampl | Sample Name: AA-10-20230426-0645, 4/26/2023 |     |     | 9:35:00AM, Clie | ent        |              |     |
|----------------|------------|--------------|---------------------------------------------|-----|-----|-----------------|------------|--------------|-----|
| Constituent    |            | Result       | Units                                       | PQL | MDL | Method          | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 50           | ppmv                                        | 2.0 | 1.8 | ASTM-D1946      | ND         |              | 1   |

|     |            | Run            |                |         |            | QC       |          |             |  |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|--|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |  |
| 1   | ASTM-D1946 | 05/09/23 08:02 | 05/09/23 12:20 | RMK     | GC-A1      | 1        | B165689  | No Prep     |  |



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 230833                | 2-02 Client Sampl | e Name:        | AA-CT-20     | 230426-06 | 50, 4/26/2023 9: | 43:00AM, Cli | ent          |                 |
|--------------------------------------|-------------------|----------------|--------------|-----------|------------------|--------------|--------------|-----------------|
| Constituent                          | Result            | المنفد         | PQL          | MDL       | Method           | MB           | Lab          | DON             |
| Constituent<br>Acetone               | 13                | Units<br>ug/m3 | 5.0          | 0.038     | EPA-TO-15-SIM    | Bias<br>ND   | Quals<br>A01 | <u>DCN</u><br>1 |
| Benzene                              | 0.63              | ug/m3          | 0.050        | 0.0032    | EPA-TO-15-SIM    | ND           |              | 2               |
| Benzyl chloride                      | ND                | ug/m3          | 0.50         | 0.0052    | EPA-TO-15-SIM    | ND           |              | 2               |
| Carbon tetrachloride                 | ND                | ug/m3          | 0.20         | 0.0063    | EPA-TO-15-SIM    | ND           |              | 2               |
| Chlorobenzene                        | ND                | ug/m3          | 0.10         | 0.0079    | EPA-TO-15-SIM    | ND           |              | 2               |
| Chloroform                           | ND                | ug/m3          | 0.050        | 0.0058    | EPA-TO-15-SIM    | ND           |              | 2               |
| 1,2-Dibromoethane                    | ND                | ug/m3          | 0.20         | 0.014     | EPA-TO-15-SIM    | ND           |              | 2               |
| 1,2-Dichlorobenzene                  | ND                | ug/m3          | 0.20         | 0.011     | EPA-TO-15-SIM    | ND           |              | 2               |
| 1,3-Dichlorobenzene                  | ND                | ug/m3          | 0.20         | 0.013     | EPA-TO-15-SIM    | ND           |              | 2               |
| 1,4-Dichlorobenzene                  | ND                | ug/m3          | 0.20         | 0.016     | EPA-TO-15-SIM    | ND           |              | 2               |
| Dichlorodifluoromethane              | 1.4               | ug/m3          | 0.25         | 0.026     | EPA-TO-15-SIM    | ND           | A01          | 1               |
| I,1-Dichloroethane                   | ND                | ug/m3          | 0.050        | 0.0041    | EPA-TO-15-SIM    | ND           |              | 2               |
| ,2-Dichloroethane                    | ND                | ug/m3          | 0.10         | 0.0046    | EPA-TO-15-SIM    | ND           |              | 2               |
| 1,1-Dichloroethene                   | ND                | ug/m3          | 0.050        | 0.0078    | EPA-TO-15-SIM    | ND           |              | 2               |
| cis-1,2-Dichloroethene               | ND                | ug/m3          | 0.050        | 0.0044    | EPA-TO-15-SIM    | ND           |              | 2               |
| rans-1,2-Dichloroethene              | ND                | ug/m3          | 0.050        | 0.0075    | EPA-TO-15-SIM    | ND           |              | 2               |
| rans-1,3-Dichloropropene             | ND                | ug/m3          | 0.050        | 0.013     | EPA-TO-15-SIM    | ND           |              | 2               |
| I,1-Difluoroethane                   | 1.7               | ug/m3          | 25           | 0.014     | EPA-TO-15-SIM    | ND           | J,A01        | 1               |
| Ethylbenzene                         | 0.35              | ug/m3          | 0.050        | 0.017     | EPA-TO-15-SIM    | ND           |              | 2               |
| Methylene chloride                   | ND                | ug/m3          | 0.20         | 0.0077    | EPA-TO-15-SIM    | ND           |              | 2               |
| Fetrachloroethene                    | ND                | ug/m3          | 0.10         | 0.011     | EPA-TO-15-SIM    | ND           |              | 2               |
| Foluene                              | 1.6               | ug/m3          | 0.10         | 0.0062    | EPA-TO-15-SIM    | ND           |              | 2               |
| 1,1,1-Trichloroethane                | ND                | ug/m3          | 0.10         | 0.0055    | EPA-TO-15-SIM    | ND           |              | 2               |
| 1,1,2-Trichloroethane                | ND                | ug/m3          | 0.10         | 0.0055    | EPA-TO-15-SIM    | ND           |              | 2               |
| Frichloroethene                      | ND                | ug/m3          | 0.10         | 0.0095    | EPA-TO-15-SIM    | ND           |              | 2               |
| Frichlorofluoromethane               | 1.4               | ug/m3          | 0.050        | 0.0057    | EPA-TO-15-SIM    | ND           |              | 2               |
| 1,1,2-Trichloro-1,2,2-trifluoroethan | ie 0.63           | ug/m3          | 0.10         | 0.0078    | EPA-TO-15-SIM    | ND           |              | 2               |
| /inyl chloride                       | ND                | ug/m3          | 0.020        | 0.0046    | EPA-TO-15-SIM    | ND           |              | 2               |
| o- & m-Xylenes                       | 1.2               | ug/m3          | 0.050        | 0.0082    | EPA-TO-15-SIM    | ND           |              | 2               |
| o-Xylene                             | 0.45              | ug/m3          | 0.050        | 0.0044    | EPA-TO-15-SIM    | ND           |              | 2               |
| Fotal Xylenes                        | 1.6               | ug/m3          | 0.10         | 0.013     | EPA-TO-15-SIM    | ND           |              | 2               |
| 4-Bromofluorobenzene (Surrogate)     | 84.1              | %              | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM    |              |              | 1               |
| 4-Bromofluorobenzene (Surrogate)     | 103               | %              | 50 - 150 (LC | L - UCL)  | EPA-TO-15-SIM    |              |              | 2               |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

An results noted in this report are not the exclusive use of the submitting party. Face Analytical assumes no responsionity for report and ration, separation, detachment 001423656 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2308332-02 |               | Client San     | Client Sample Name: AA-CT-202304 |         |            | 426-0650, 4/26/2023 9:43:00AM, Client |          |           |  |  |
|---------------------------|---------------|----------------|----------------------------------|---------|------------|---------------------------------------|----------|-----------|--|--|
|                           |               | -              | Run                              |         |            |                                       | QC       |           |  |  |
| DCN                       | Method        | Prep Date      | Date/Time                        | Analyst | Instrument | Dilution                              | Batch ID |           |  |  |
| 1                         | EPA-TO-15-SIM | 05/05/23 12:29 | 05/08/23 19:14                   | BEP     | MS-A1      | 5                                     | B165619  | EPA TO-15 |  |  |
| 2                         | EPA-TO-15-SIM | 05/05/23 12:29 | 05/08/23 19:52                   | BEP     | MS-A1      | 1                                     | B165619  | EPA TO-15 |  |  |



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308332-02 | Client Sampl | e Name: | AA-CT-20 | 230426-06 | 50, 4/26/2023 | 9:43:00AM, Cli | ent          |     |
|----------------|------------|--------------|---------|----------|-----------|---------------|----------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL       | Method        | MB<br>Bias     | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 3.3          | ppmv    | 2.0      | 1.8       | ASTM-D1946    | ND             |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/09/23 08:02 | 05/09/23 12:40 | RMK     | GC-A1      | 1        | B165689  | No Prep     |



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 230               | 8332-03 Client Sa | mple Name: | AA-710-2     | 20230426-0 | 700, 4/26/2023 | :52:00AM, C | ,            |          |  |
|----------------------------------|-------------------|------------|--------------|------------|----------------|-------------|--------------|----------|--|
| Constituent                      | Resul             | t Units    | PQL          | MDL        | Method         | MB<br>Bias  | Lab<br>Quals | DCN      |  |
| Acetone                          |                   | ug/m3      | 5.0          | 0.038      | EPA-TO-15-SIM  | ND          | A01          | <u> </u> |  |
| Benzene                          | 0.87              | ug/m3      | 0.050        | 0.0032     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| Benzyl chloride                  | ND                | ug/m3      | 0.50         | 0.0052     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| Carbon tetrachloride             | ND                | ug/m3      | 0.20         | 0.0063     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| Chlorobenzene                    | ND                | ug/m3      | 0.10         | 0.0079     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| Chloroform                       | ND                | ug/m3      | 0.050        | 0.0058     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| 1,2-Dibromoethane                | ND                | ug/m3      | 0.20         | 0.014      | EPA-TO-15-SIM  | ND          |              | 2        |  |
| 1,2-Dichlorobenzene              | ND                | ug/m3      | 0.20         | 0.011      | EPA-TO-15-SIM  | ND          |              | 2        |  |
| 1,3-Dichlorobenzene              | ND                | ug/m3      | 0.20         | 0.013      | EPA-TO-15-SIM  | ND          |              | 2        |  |
| 1,4-Dichlorobenzene              | ND                | ug/m3      | 0.20         | 0.016      | EPA-TO-15-SIM  | ND          |              | 2        |  |
| Dichlorodifluoromethane          | 1.4               | ug/m3      | 0.25         | 0.026      | EPA-TO-15-SIM  | ND          | A01          | 1        |  |
| I,1-Dichloroethane               | ND                | ug/m3      | 0.050        | 0.0041     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| 1,2-Dichloroethane               | ND                | ug/m3      | 0.10         | 0.0046     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| I,1-Dichloroethene               | ND                | ug/m3      | 0.050        | 0.0078     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| cis-1,2-Dichloroethene           | ND                | ug/m3      | 0.050        | 0.0044     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| rans-1,2-Dichloroethene          | ND                | ug/m3      | 0.050        | 0.0075     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| rans-1,3-Dichloropropene         | ND                | ug/m3      | 0.050        | 0.013      | EPA-TO-15-SIM  | ND          |              | 2        |  |
| 1,1-Difluoroethane               | 0.93              | ug/m3      | 25           | 0.014      | EPA-TO-15-SIM  | ND          | J,A01        | 1        |  |
| Ethylbenzene                     | 0.35              | ug/m3      | 0.050        | 0.017      | EPA-TO-15-SIM  | ND          |              | 2        |  |
| Methylene chloride               | ND                | ug/m3      | 0.20         | 0.0077     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| Tetrachloroethene                | ND                | ug/m3      | 0.10         | 0.011      | EPA-TO-15-SIM  | ND          |              | 2        |  |
| Foluene                          | 1.6               | ug/m3      | 0.10         | 0.0062     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| 1,1,1-Trichloroethane            | ND                | ug/m3      | 0.10         | 0.0055     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| 1,1,2-Trichloroethane            | ND                | ug/m3      | 0.10         | 0.0055     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| Trichloroethene                  | ND                | ug/m3      | 0.10         | 0.0095     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| Trichlorofluoromethane           | 1.4               | ug/m3      | 0.050        | 0.0057     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| 1,1,2-Trichloro-1,2,2-trifluoroe | ethane 0.61       | ug/m3      | 0.10         | 0.0078     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| /inyl chloride                   | ND                | ug/m3      | 0.020        | 0.0046     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| o- & m-Xylenes                   | 1.1               | ug/m3      | 0.050        | 0.0082     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| o-Xylene                         | 0.44              | ug/m3      | 0.050        | 0.0044     | EPA-TO-15-SIM  | ND          |              | 2        |  |
| Fotal Xylenes                    | 1.6               | ug/m3      | 0.10         | 0.013      | EPA-TO-15-SIM  | ND          |              | 2        |  |
| 4-Bromofluorobenzene (Surrog     | gate) 84.1        | %          | 50 - 150 (LC | CL - UCL)  | EPA-TO-15-SIM  |             |              | 1        |  |
| 4-Bromofluorobenzene (Surrog     | gate) 99.4        | %          | 50 - 150 (LC | CL - UCL)  | EPA-TO-15-SIM  |             |              | 2        |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

enort ID: 1001423656 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 05/10/2023 11:03 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample II | BCL Sample ID: 2308332-03 C |                | nple Name:     | 0426-0700, 4/26/ | 26-0700, 4/26/2023 9:52:00AM, Client |          |          |           |
|---------------|-----------------------------|----------------|----------------|------------------|--------------------------------------|----------|----------|-----------|
|               |                             |                | Run            |                  |                                      |          | QC       |           |
| DCN           | Method                      | Prep Date      | Date/Time      | Analyst          | Instrument                           | Dilution | Batch ID |           |
| 1             | EPA-TO-15-SIM               | 05/05/23 12:29 | 05/08/23 20:23 | BEP              | MS-A1                                | 5        | B165619  | EPA TO-15 |
| 2             | EPA-TO-15-SIM               | 05/05/23 12:29 | 05/08/23 21:01 | BEP              | MS-A1                                | 1        | B165619  | EPA TO-15 |

DCN = Data Continuation Number

Page 13 of 26



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308332-03 | Client Sampl | Client Sample Name: AA- |     |     | 700, 4/26/2023 | 9:52:00AM, C |              |     |
|----------------|------------|--------------|-------------------------|-----|-----|----------------|--------------|--------------|-----|
| Constituent    |            | Result       | Units                   | PQL | MDL | Method         | MB<br>Bias   | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 3.8          | ppmv                    | 2.0 | 1.8 | ASTM-D1946     | ND           |              | 1   |

|     |            |                | Run            |         |            |          | QC       |             |  |  |  |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|--|--|--|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |  |  |  |
| 1   | ASTM-D1946 | 05/09/23 08:02 | 05/09/23 13:00 | RMK     | GC-A1      | 1        | B165689  | No Prep     |  |  |  |



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2308                | 332-04 Client Sam | ple Name:      | AA-710/1     | 0-20230420 | 6-0705, 4/26/2023       | 10:05:00AN | A, Client    |                 |
|------------------------------------|-------------------|----------------|--------------|------------|-------------------------|------------|--------------|-----------------|
| Constituent                        | Decult            | Unite          | PQL          | MDL        | Mathad                  | MB         | Lab          | DON             |
| Constituent<br>Acetone             | Result<br>9.1     | Units<br>ug/m3 | 5.0          | 0.038      | Method<br>EPA-TO-15-SIM | Bias<br>ND | Quals<br>A01 | <u>DCN</u><br>1 |
| Benzene                            | 1.2               | ug/m3          | 0.050        | 0.0032     | EPA-TO-15-SIM           | ND         |              | 2               |
| Benzyl chloride                    | ND                | ug/m3          | 0.50         | 0.0052     | EPA-TO-15-SIM           | ND         |              | 2               |
| Carbon tetrachloride               | ND                | ug/m3          | 0.20         | 0.0063     | EPA-TO-15-SIM           | ND         |              | 2               |
| Chlorobenzene                      | ND                | ug/m3          | 0.10         | 0.0079     | EPA-TO-15-SIM           | ND         |              | 2               |
| Chloroform                         | ND                | ug/m3          | 0.050        | 0.0058     | EPA-TO-15-SIM           | ND         |              | 2               |
| 1,2-Dibromoethane                  | ND                | ug/m3          | 0.20         | 0.014      | EPA-TO-15-SIM           | ND         |              | 2               |
| 1,2-Dichlorobenzene                | ND                | ug/m3          | 0.20         | 0.011      | EPA-TO-15-SIM           | ND         |              | 2               |
| 1,3-Dichlorobenzene                | ND                | ug/m3          | 0.20         | 0.013      | EPA-TO-15-SIM           | ND         |              | 2               |
| 1,4-Dichlorobenzene                | ND                | ug/m3          | 0.20         | 0.016      | EPA-TO-15-SIM           | ND         |              | 2               |
| Dichlorodifluoromethane            | 1.6               | ug/m3          | 0.25         | 0.026      | EPA-TO-15-SIM           | ND         | A01          | 1               |
| 1,1-Dichloroethane                 | ND                | ug/m3          | 0.050        | 0.0041     | EPA-TO-15-SIM           | ND         |              | 2               |
| 1,2-Dichloroethane                 | ND                | ug/m3          | 0.10         | 0.0046     | EPA-TO-15-SIM           | ND         |              | 2               |
| 1,1-Dichloroethene                 | ND                | ug/m3          | 0.050        | 0.0078     | EPA-TO-15-SIM           | ND         |              | 2               |
| cis-1,2-Dichloroethene             | ND                | ug/m3          | 0.050        | 0.0044     | EPA-TO-15-SIM           | ND         |              | 2               |
| trans-1,2-Dichloroethene           | ND                | ug/m3          | 0.050        | 0.0075     | EPA-TO-15-SIM           | ND         |              | 2               |
| trans-1,3-Dichloropropene          | ND                | ug/m3          | 0.050        | 0.013      | EPA-TO-15-SIM           | ND         |              | 2               |
| 1,1-Difluoroethane                 | 1.6               | ug/m3          | 25           | 0.014      | EPA-TO-15-SIM           | ND         | J,A01        | 1               |
| Ethylbenzene                       | 0.68              | ug/m3          | 0.050        | 0.017      | EPA-TO-15-SIM           | ND         |              | 2               |
| Methylene chloride                 | 4.9               | ug/m3          | 1.0          | 0.038      | EPA-TO-15-SIM           | ND         | A01          | 1               |
| Tetrachloroethene                  | ND                | ug/m3          | 0.10         | 0.011      | EPA-TO-15-SIM           | ND         |              | 2               |
| Toluene                            | 1.6               | ug/m3          | 0.50         | 0.031      | EPA-TO-15-SIM           | ND         | A01          | 1               |
| 1,1,1-Trichloroethane              | ND                | ug/m3          | 0.10         | 0.0055     | EPA-TO-15-SIM           | ND         |              | 2               |
| 1,1,2-Trichloroethane              | ND                | ug/m3          | 0.10         | 0.0055     | EPA-TO-15-SIM           | ND         |              | 2               |
| Trichloroethene                    | ND                | ug/m3          | 0.10         | 0.0095     | EPA-TO-15-SIM           | ND         |              | 2               |
| Trichlorofluoromethane             | 1.4               | ug/m3          | 0.050        | 0.0057     | EPA-TO-15-SIM           | ND         |              | 2               |
| 1,1,2-Trichloro-1,2,2-trifluoroeth | nane 0.60         | ug/m3          | 0.10         | 0.0078     | EPA-TO-15-SIM           | ND         |              | 2               |
| Vinyl chloride                     | ND                | ug/m3          | 0.020        | 0.0046     | EPA-TO-15-SIM           | ND         |              | 2               |
| p- & m-Xylenes                     | 2.7               | ug/m3          | 0.050        | 0.0082     | EPA-TO-15-SIM           | ND         |              | 2               |
| o-Xylene                           | 0.99              | ug/m3          | 0.050        | 0.0044     | EPA-TO-15-SIM           | ND         |              | 2               |
| Total Xylenes                      | 3.7               | ug/m3          | 0.10         | 0.013      | EPA-TO-15-SIM           | ND         |              | 2               |
| 4-Bromofluorobenzene (Surroga      | te) 82.7          | %              | 50 - 150 (LC | CL - UCL)  | EPA-TO-15-SIM           |            |              | 1               |
| 4-Bromofluorobenzene (Surroga      | te) 107           | %              | 50 - 150 (LC | CL - UCL)  | EPA-TO-15-SIM           |            |              | 2               |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

D: 1001423656 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample II | <b>D:</b> 2308332-04 | Client San     | nple Name:     | AA-710/10-20 | 230426-0705, 4 | :05:00AM, CI | ient     |           |
|---------------|----------------------|----------------|----------------|--------------|----------------|--------------|----------|-----------|
|               |                      |                | Run            |              |                |              | QC       |           |
| DCN           | Method               | Prep Date      | Date/Time      | Analyst      | Instrument     | Dilution     | Batch ID |           |
| 1             | EPA-TO-15-SIM        | 05/05/23 12:29 | 05/08/23 21:32 | BEP          | MS-A1          | 5            | B165619  | EPA TO-15 |
| 2             | EPA-TO-15-SIM        | 05/05/23 12:29 | 05/08/23 22:10 | BEP          | MS-A1          | 1            | B165619  | EPA TO-15 |



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308332-04 | Client Sampl | e Name: | AA-710/10 | 0-20230420 | 6-0705, 4/26/2023 | 10:05:00AM, Client |              |     |
|----------------|------------|--------------|---------|-----------|------------|-------------------|--------------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL       | MDL        | Method            | MB<br>Bias         | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 2.9          | ppmv    | 2.0       | 1.8        | ASTM-D1946        | ND                 |              | 1   |

|     |            |                | Run            |         |            |          | QC       |             |  |  |  |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|--|--|--|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |  |  |  |
| 1   | ASTM-D1946 | 05/09/23 08:02 | 05/09/23 13:20 | RMK     | GC-A1      | 1        | B165689  | No Prep     |  |  |  |



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

### **Quality Control Report - Method Blank Analysis**

| Constituent                           | QC Sample ID | MB Result | Units | PQL     | MDL           | Lab Quals | Run # |
|---------------------------------------|--------------|-----------|-------|---------|---------------|-----------|-------|
| QC Batch ID: B165619                  |              |           |       |         |               |           |       |
| Acetone                               | B165619-BLK1 | ND        | ug/m3 | 1.0     | 0.0075        |           | 1     |
| Benzene                               | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0032        |           | 1     |
| Benzyl chloride                       | B165619-BLK1 | ND        | ug/m3 | 0.50    | 0.0052        |           | 1     |
| Carbon tetrachloride                  | B165619-BLK1 | ND        | ug/m3 | 0.20    | 0.0063        |           | 1     |
| Chlorobenzene                         | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.0079        |           | 1     |
| Chloroform                            | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0058        |           | 1     |
| 1,2-Dibromoethane                     | B165619-BLK1 | ND        | ug/m3 | 0.20    | 0.014         |           | 1     |
| 1,2-Dichlorobenzene                   | B165619-BLK1 | ND        | ug/m3 | 0.20    | 0.011         |           | 1     |
| 1,3-Dichlorobenzene                   | B165619-BLK1 | ND        | ug/m3 | 0.20    | 0.013         |           | 1     |
| 1,4-Dichlorobenzene                   | B165619-BLK1 | ND        | ug/m3 | 0.20    | 0.016         |           | 1     |
| Dichlorodifluoromethane               | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0052        |           | 1     |
| 1,1-Dichloroethane                    | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0041        |           | 1     |
| 1,2-Dichloroethane                    | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.0046        |           | 1     |
| 1,1-Dichloroethene                    | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0078        |           | 1     |
| cis-1,2-Dichloroethene                | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 1     |
| trans-1,2-Dichloroethene              | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0075        |           | 1     |
| trans-1,3-Dichloropropene             | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.013         |           | 1     |
| 1,1-Difluoroethane                    | B165619-BLK1 | ND        | ug/m3 | 5.0     | 0.0027        |           | 1     |
| Ethylbenzene                          | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.017         |           | 1     |
| Methylene chloride                    | B165619-BLK1 | ND        | ug/m3 | 0.20    | 0.0077        |           | 1     |
| Tetrachloroethene                     | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.011         |           | 1     |
| Toluene                               | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.0062        |           | 1     |
| 1,1,1-Trichloroethane                 | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 1     |
| 1,1,2-Trichloroethane                 | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 1     |
| Trichloroethene                       | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.0095        |           | 1     |
| Trichlorofluoromethane                | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0057        |           | 1     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.0078        |           | 1     |
| Vinyl chloride                        | B165619-BLK1 | ND        | ug/m3 | 0.020   | 0.0046        |           | 1     |
| p- & m-Xylenes                        | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0082        |           | 1     |
| o-Xylene                              | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 1     |
| Total Xylenes                         | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.013         |           | 1     |
| 4-Bromofluorobenzene (Surrogate)      | B165619-BLK1 | 80.8      | %     | 50 - 15 | 0 (LCL - UCL) |           | 1     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

1001423656 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

### **Quality Control Report - Method Blank Analysis**

| Run # | QC Sample ID | QC Type | Method        | Prep Date | Run<br>Date Time | Analyst | Instrument | Dilution |
|-------|--------------|---------|---------------|-----------|------------------|---------|------------|----------|
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | РВ      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 1     | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting particular submitting particular provide and the submitting particular submi

Report ID: 1001423656



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

|                        | -               |      | -       |         | -     |          | •    | Control I | imite |       |       |
|------------------------|-----------------|------|---------|---------|-------|----------|------|-----------|-------|-------|-------|
|                        |                 |      |         | Spike   |       | Percent  |      | Percent   |       | Lab   |       |
| Constituent            | QC Sample ID    | Туре | Result  | Level   | Units | Recovery | RPD  | Recovery  | RPD   | Quals | Run # |
| QC Batch ID: B165619   |                 |      |         |         |       |          |      |           |       |       |       |
| Benzene                | <br>B165619-BS1 | LCS  | 0.31114 | 0.31948 | ug/m3 | 97.4     |      | 70 - 130  |       |       | 1     |
|                        | B165619-BSD1    | LCSD | 0.30877 | 0.31948 | ug/m3 | 96.7     | 0.8  | 70 - 130  | 30    |       | 2     |
| Benzyl chloride        | B165619-BS1     | LCS  | 0.48122 | 0.51772 | ug/m3 | 93.0     |      | 70 - 130  |       | J     | 1     |
|                        | B165619-BSD1    | LCSD | 0.53227 | 0.51772 | ug/m3 | 103      | 10.1 | 70 - 130  | 30    |       | 2     |
| Carbon tetrachloride   | B165619-BS1     | LCS  | 0.68859 | 0.62913 | ug/m3 | 109      |      | 70 - 130  |       |       | 1     |
|                        | B165619-BSD1    | LCSD | 0.68305 | 0.62913 | ug/m3 | 109      | 0.8  | 70 - 130  | 30    |       | 2     |
| Chlorobenzene          | B165619-BS1     | LCS  | 0.46321 | 0.46036 | ug/m3 | 101      |      | 70 - 130  |       |       | 1     |
|                        | B165619-BSD1    | LCSD | 0.46758 | 0.46036 | ug/m3 | 102      | 0.9  | 70 - 130  | 30    |       | 2     |
| Chloroform             | B165619-BS1     | LCS  | 0.52673 | 0.48825 | ug/m3 | 108      |      | 70 - 130  |       |       | 1     |
|                        | B165619-BSD1    | LCSD | 0.51940 | 0.48825 | ug/m3 | 106      | 1.4  | 70 - 130  | 30    |       | 2     |
| 1,2-Dibromoethane      | B165619-BS1     | LCS  | 0.81414 | 0.76835 | ug/m3 | 106      |      | 70 - 130  |       |       | 1     |
|                        | B165619-BSD1    | LCSD | 0.81714 | 0.76835 | ug/m3 | 106      | 0.4  | 70 - 130  | 30    |       | 2     |
| 1,2-Dichlorobenzene    | B165619-BS1     | LCS  | 0.62174 | 0.60124 | ug/m3 | 103      |      | 70 - 130  |       |       | 1     |
|                        | B165619-BSD1    | LCSD | 0.65925 | 0.60124 | ug/m3 | 110      | 5.9  | 70 - 130  | 30    |       | 2     |
| 1,3-Dichlorobenzene    | B165619-BS1     | LCS  | 0.53330 | 0.60124 | ug/m3 | 88.7     |      | 70 - 130  |       |       | 1     |
|                        | B165619-BSD1    | LCSD | 0.64296 | 0.60124 | ug/m3 | 107      | 18.6 | 70 - 130  | 30    |       | 2     |
| 1,4-Dichlorobenzene    | B165619-BS1     | LCS  | 0.58693 | 0.60124 | ug/m3 | 97.6     |      | 70 - 130  |       |       | 1     |
|                        | B165619-BSD1    | LCSD | 0.59294 | 0.60124 | ug/m3 | 98.6     | 1.0  | 70 - 130  | 30    |       | 2     |
| 1,1-Dichloroethane     | B165619-BS1     | LCS  | 0.42255 | 0.40474 | ug/m3 | 104      |      | 70 - 130  |       |       | 1     |
|                        | B165619-BSD1    | LCSD | 0.42218 | 0.40474 | ug/m3 | 104      | 0.1  | 70 - 130  | 30    |       | 2     |
| 1,2-Dichloroethane     | B165619-BS1     | LCS  | 0.41203 | 0.40474 | ug/m3 | 102      |      | 70 - 130  |       |       | 1     |
|                        | B165619-BSD1    | LCSD | 0.40871 | 0.40474 | ug/m3 | 101      | 0.8  | 70 - 130  | 30    |       | 2     |
| 1,1-Dichloroethene     | B165619-BS1     | LCS  | 0.40466 | 0.39649 | ug/m3 | 102      |      | 70 - 130  |       |       | 1     |
|                        | B165619-BSD1    | LCSD | 0.40062 | 0.39649 | ug/m3 | 101      | 1.0  | 70 - 130  | 30    |       | 2     |
| cis-1,2-Dichloroethene | B165619-BS1     | LCS  | 0.39546 | 0.39649 | ug/m3 | 99.7     |      | 70 - 130  |       |       | 1     |
|                        | B165619-BSD1    | LCSD | 0.39404 | 0.39649 | ug/m3 | 99.4     | 0.4  | 70 - 130  | 30    |       | 2     |
| Methylene chloride     | B165619-BS1     | LCS  | 0.40921 | 0.34737 | ug/m3 | 118      |      | 70 - 130  |       |       | 1     |
|                        | B165619-BSD1    | LCSD | 0.40726 | 0.34737 | ug/m3 | 117      | 0.5  | 70 - 130  | 30    |       | 2     |
| Tetrachloroethene      | B165619-BS1     | LCS  | 0.73034 | 0.67825 | ug/m3 | 108      |      | 70 - 130  |       |       | 1     |
|                        | B165619-BSD1    | LCSD | 0.73814 | 0.67825 | ug/m3 | 109      | 1.1  | 70 - 130  | 30    |       | 2     |
| Toluene                | B165619-BS1     | LCS  | 0.36788 | 0.37684 | ug/m3 | 97.6     |      | 70 - 130  |       |       | 1     |
|                        | B165619-BSD1    | LCSD | 0.36916 | 0.37684 | ug/m3 | 98.0     | 0.3  | 70 - 130  | 30    |       | 2     |
| 1,1,1-Trichloroethane  | B165619-BS1     | LCS  | 0.58349 | 0.54562 | ug/m3 | 107      |      | 70 - 130  |       |       | 1     |
|                        | B165619-BSD1    | LCSD | 0.57928 | 0.54562 | ug/m3 | 106      | 0.7  | 70 - 130  | 30    |       | 2     |
| 1,1,2-Trichloroethane  | B165619-BS1     | LCS  | 0.58861 | 0.54562 | ug/m3 | 108      |      | 70 - 130  |       |       | 1     |
|                        | B165619-BSD1    | LCSD | 0.58894 | 0.54562 | ug/m3 | 108      | 0.1  | 70 - 130  | 30    |       | 2     |
|                        |                 |      |         |         |       |          |      |           |       |       |       |

## **Quality Control Report - Laboratory Control Sample**

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

|                                  |              |      |         |         |       |          |     | Control I | imits |       |       |
|----------------------------------|--------------|------|---------|---------|-------|----------|-----|-----------|-------|-------|-------|
|                                  |              |      |         | Spike   |       | Percent  |     | Percent   |       | Lab   |       |
| Constituent                      | QC Sample ID | Туре | Result  | Level   | Units | Recovery | RPD | Recovery  | RPD   | Quals | Run # |
| QC Batch ID: B165619             |              |      |         |         |       |          |     |           |       |       |       |
| Trichloroethene                  | B165619-BS1  | LCS  | 0.57230 | 0.53737 | ug/m3 | 106      |     | 70 - 130  |       |       | 1     |
|                                  | B165619-BSD1 | LCSD | 0.57564 | 0.53737 | ug/m3 | 107      | 0.6 | 70 - 130  | 30    |       | 2     |
| Vinyl chloride                   | B165619-BS1  | LCS  | 0.29521 | 0.25562 | ug/m3 | 115      |     | 70 - 130  |       |       | 1     |
|                                  | B165619-BSD1 | LCSD | 0.29135 | 0.25562 | ug/m3 | 114      | 1.3 | 70 - 130  | 30    |       | 2     |
| p- & m-Xylenes                   | B165619-BS1  | LCS  | 0.85410 | 0.86843 | ug/m3 | 98.4     |     | 70 - 130  |       |       | 1     |
|                                  | B165619-BSD1 | LCSD | 0.86204 | 0.86843 | ug/m3 | 99.3     | 0.9 | 70 - 130  | 30    |       | 2     |
| o-Xylene                         | B165619-BS1  | LCS  | 0.42892 | 0.43421 | ug/m3 | 98.8     |     | 70 - 130  |       |       | 1     |
|                                  | B165619-BSD1 | LCSD | 0.43795 | 0.43421 | ug/m3 | 101      | 2.1 | 70 - 130  | 30    |       | 2     |
| Total Xylenes                    | B165619-BS1  | LCS  | 1.2830  | 1.3026  | ug/m3 | 98.5     |     | 70 - 130  |       |       | 1     |
|                                  | B165619-BSD1 | LCSD | 1.3000  | 1.3026  | ug/m3 | 99.8     | 1.3 | 70 - 130  | 30    |       | 2     |
| 4-Bromofluorobenzene (Surrogate) | B165619-BS1  | LCS  | 3.42    | 3.58    | ug/m3 | 95.5     |     | 50 - 150  |       |       | 1     |
|                                  | B165619-BSD1 | LCSD | 3.47    | 3.58    | ug/m3 | 96.9     | 1.5 | 50 - 150  |       |       | 2     |

### **Quality Control Report - Laboratory Control Sample**



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

### **Quality Control Report - Laboratory Control Sample**

| Run # | QC Sample ID | QC Type | Method        | Prep Date | Run<br>Date Time | Analyst | Instrument | Dilution |
|-------|--------------|---------|---------------|-----------|------------------|---------|------------|----------|
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 1     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results list de in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11423656 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com F

Report ID: 1001423656



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

### **Quality Control Report - Laboratory Control Sample**

|       |              |         |               |           | Run            |         |            |          |
|-------|--------------|---------|---------------|-----------|----------------|---------|------------|----------|
| Run # | QC Sample ID | QC Type | Method        | Prep Date | Date Time      | Analyst | Instrument | Dilution |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29 | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29 | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29 | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29 | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29 | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29 | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29 | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29 | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29 | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29 | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29 | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29 | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29 | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29 | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29 | BEP     | MS-A1      | 1        |
| 2     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29 | BEP     | MS-A1      | 1        |



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

### **Quality Control Report - Method Blank Analysis**

| Constituent            |                |         | QC Sample ID | MB Result | Units          | PC      | λΓ I       | MDL     | Lab Quals | Run # |
|------------------------|----------------|---------|--------------|-----------|----------------|---------|------------|---------|-----------|-------|
| QC Bat<br>Methane (CH4 | ch ID: B165689 |         | B165689-BLK1 | ND        | 2227           | 2       | 0          | 1.8     |           | 1     |
|                        | +)             |         | B103069-BLK1 | ND        | ppmv           | ۷.      | .0         | 1.0     |           | 1     |
|                        |                |         |              |           | Run            |         |            |         |           |       |
| Run #                  | QC Sample ID   | QC Type | Method       | Prep Date | Date Time      | Analyst | Instrument | Dilutio | n         |       |
| 1                      | B165689-BLK1   | PB      | ASTM-D1946   | 05/09/23  | 05/09/23 11:39 | RMK     | GC-A1      | 1       |           |       |



Reported:05/10/202311:03Project:City TerraceProject Number:36908Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

### **Quality Control Report - Laboratory Control Sample**

|                      |              |      |        |                |       |                     |     | Control I           | <u>imits</u> |              |       |
|----------------------|--------------|------|--------|----------------|-------|---------------------|-----|---------------------|--------------|--------------|-------|
| Constituent          | QC Sample ID | Туре | Result | Spike<br>Level | Units | Percent<br>Recovery | RPD | Percent<br>Recovery | RPD          | Lab<br>Quals | Run # |
| QC Batch ID: B165689 |              |      |        |                |       |                     |     |                     |              |              |       |
| Methane (CH4)        | B165689-BS1  | LCS  | 20435  | 18000          | ppmv  | 114                 |     | 70 - 130            |              |              | 1     |
|                      | B165689-BSD1 | LCSD | 20514  | 18000          | ppmv  | 114                 | 0.4 | 70 - 130            | 30           |              | 2     |

|       | Run          |         |            |           |                |         |            |          |  |
|-------|--------------|---------|------------|-----------|----------------|---------|------------|----------|--|
| Run # | QC Sample ID | QC Type | Method     | Prep Date | Date Time      | Analyst | Instrument | Dilution |  |
| 1     | B165689-BS1  | LCS     | ASTM-D1946 | 05/09/23  | 05/09/23 10:59 | RMK     | GC-A1      | 1        |  |
| 2     | B165689-BSD1 | LCSD    | ASTM-D1946 | 05/09/23  | 05/09/23 11:19 | RMK     | GC-A1      | 1        |  |



#### Reported: 05/10/2023 11:03 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

#### **Notes And Definitions**

- MDL Method Detection Limit
- ND Analyte Not Detected
- PQL Practical Quantitation Limit
- A01 Detection and quantitation limits are raised due to sample dilution.



Date of Report: 05/15/2023

April McGuire

Roux Associates, Inc -Long Beach 5150 E. Pacific Coast Hwy, Suite 450 Long Beach, CA 90804

Client Project:36908BCL Project:City TerraceBCL Work Order:2308505Invoice ID:B476010

Enclosed are the results of analyses for samples received by the laboratory on 4/29/2023. If you have any questions concerning this report, please feel free to contact me.

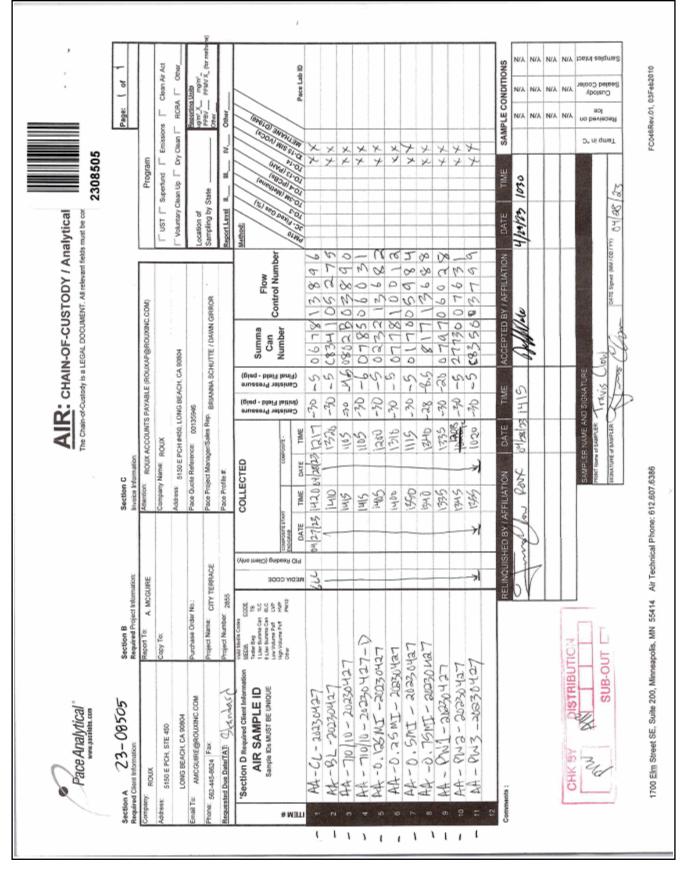
Sincerely,

Contact Person: Brianna Schutte Client Services Rep

A

Stuart Buttram Operations Manager

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101




## **Table of Contents**

| Sample Information                                                                                  |    |
|-----------------------------------------------------------------------------------------------------|----|
| Chain of Custody and Cooler Receipt form                                                            | 3  |
| Laboratory / Client Sample Cross Reference                                                          | 6  |
| Sample Results                                                                                      |    |
| 2308505-01 - AA-CL-20230427                                                                         |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       | 8  |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |    |
| 2308505-02 - AA-BL-20230427                                                                         |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       |    |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |    |
| 2308505-03 - AA-710/10-20230427                                                                     |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       |    |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |    |
| 2308505-04 - AA-710/10-20230427-D                                                                   |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       |    |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |    |
| 2308505-05 - AA-0.125MI-20230427                                                                    |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       |    |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |    |
| 2308505-06 - AA-0.25MI-20230427                                                                     |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       |    |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |    |
| 2308505-07 - AA-0.5MI-20230427                                                                      |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       |    |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |    |
| 2308505-08 - AA-0.75MI-20230427                                                                     | 20 |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)<br>Fixed Gases by GC/TCD (ASTM D1946) |    |
| 2308505-09 - AA-PW1-20230427                                                                        |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       | 20 |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |    |
| 2308505-10 - AA-PW2-20230427                                                                        |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       | 35 |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |    |
| 2308505-11 - AA-PW3-20230427                                                                        |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       | 38 |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |    |
| Quality Control Reports                                                                             |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)                                       |    |
| Method Blank Analysis                                                                               | 41 |
| Laboratory Control Sample                                                                           |    |
| Fixed Gases by GC/TCD (ASTM D1946)                                                                  |    |
| Method Blank Analysis                                                                               |    |
| Laboratory Control Sample                                                                           |    |
| Notes                                                                                               |    |
| Notes and Definitions                                                                               | 53 |
|                                                                                                     |    |



#### Chain of Custody and Cooler Receipt Form for 2308505 Page 1 of 3





#### Chain of Custody and Cooler Receipt Form for 2308505 Page 2 of 3

| Submission #: 73-08505<br>SHIPPING INF   |       | ATION                                                                          |                                                           |           | 1 91     | IPPING   | CONTAL   | NED         |          | COCCII             |                |  |
|------------------------------------------|-------|--------------------------------------------------------------------------------|-----------------------------------------------------------|-----------|----------|----------|----------|-------------|----------|--------------------|----------------|--|
| Fed Ex 👌 UPS 🗆 GSO                       | / GLS | □ Hand Delivery □ Ice Chest □ None □ Box △<br>□ (Specify)<br>Other □ (Specify) |                                                           |           |          |          |          |             |          | YES INO D<br>W / S |                |  |
| Refrigerant: Ice 🗆 Blue Ice              | e□    | None [                                                                         | d Ot                                                      | her 🗆     | Commen   | ts:      |          |             |          |                    |                |  |
| Custody Seals Ice Chest  Intact? Yes  No |       | Containe<br>act? Yes C                                                         |                                                           | Nonel     | Q Comm   | ients:   |          |             |          |                    |                |  |
| All samples received? Yes 👌 No 🛛         | Al    | samples                                                                        | container                                                 | s intact? | Yes 🖏 No |          | Descrip  | tion(s) mat | ch COC?  | Yes No             | 0              |  |
| COC Received                             |       |                                                                                | Ity: Container: Street, Thermometer ID: 337 Date/Time 4/2 |           |          |          |          |             |          |                    |                |  |
| YES DNO                                  |       | perature:                                                                      |                                                           |           |          | (c) Te   |          | ,c          |          |                    |                |  |
|                                          | 193   | perature:                                                                      | (A) .                                                     |           |          | (0) 10   | Ψ.       | °C          | Analyst  | Init KV            | _ 1090         |  |
| SAMPLE CONTAINERS                        | ,     | L                                                                              |                                                           | ÷         |          | SAMPLE   | NUMBERS  |             |          |                    |                |  |
| QT PE UNPRES                             |       | 1                                                                              | 1 . 2                                                     | 3         | 4        | 5        | <u> </u> | 7           | 1 2      |                    | 10             |  |
| 4ez/Baz/16ez PE UNPRES                   |       |                                                                                | 1                                                         |           |          |          |          |             | <u> </u> | · ···-             | +              |  |
| Zex Cr <sup>14</sup>                     |       |                                                                                |                                                           |           |          |          |          |             |          | +                  |                |  |
| OT INORGANIC CHEMICAL METALS             |       | ·                                                                              |                                                           |           |          | <u> </u> |          |             | <u> </u> | +                  |                |  |
| INORGANIC CHEMICAL METALS 402 / 802 /    | 16    | ——                                                                             | <u> </u>                                                  |           |          |          |          |             |          | <del> </del>       |                |  |
| TCYANIDE                                 | 1402  |                                                                                | <u> </u>                                                  |           |          |          |          |             |          |                    |                |  |
| PT NITROGEN FORMS                        |       |                                                                                |                                                           | 1         |          |          |          |             |          |                    | 13-            |  |
| PT TOTAL SULFIDE                         |       |                                                                                |                                                           |           |          |          |          |             |          |                    | - <del> </del> |  |
| Int. NITRATE / NITRITE                   |       |                                                                                | 1                                                         |           |          |          |          |             |          | <u> </u>           |                |  |
| PT TOTAL ORGANIC CARBON                  |       |                                                                                |                                                           |           |          |          |          |             | 1        |                    |                |  |
| PT CHEMICAL OXYGEN DEMAND                |       |                                                                                |                                                           |           |          |          |          |             | í        | 1                  |                |  |
| MA PHENOLICS                             |       |                                                                                |                                                           |           |          |          |          |             |          | 1                  | 1              |  |
| Buil YOA VIAL TRAVEL BLANK               |       |                                                                                |                                                           |           |          |          |          |             |          |                    |                |  |
| Oml VOA VIAL                             |       |                                                                                |                                                           |           |          |          |          |             |          |                    |                |  |
| 2T EPA 1664B                             |       |                                                                                |                                                           |           |          |          |          |             |          |                    |                |  |
| TODOR                                    | _     |                                                                                |                                                           |           |          |          |          | :           |          | L .                |                |  |
| MDIOLOGICAL                              |       |                                                                                |                                                           |           |          |          |          |             |          |                    |                |  |
| ACTERIOLOGICAL -                         |       |                                                                                |                                                           |           |          |          |          |             |          |                    |                |  |
| 0 ml VOA VEAL- 504                       |       |                                                                                |                                                           |           |          |          |          |             |          |                    |                |  |
| TEPA 508/603.3/9081A                     |       |                                                                                |                                                           |           |          |          |          |             |          |                    |                |  |
| 2T EPA 515.1/8151A                       |       |                                                                                |                                                           |           |          |          |          |             |          |                    |                |  |
| DT EPA 525.2                             |       |                                                                                |                                                           |           |          |          |          |             |          |                    |                |  |
| T EPA 525.2 TRAVEL BLANK                 | _     |                                                                                | -                                                         |           |          |          |          |             |          |                    |                |  |
| Rul EPA 547                              |       |                                                                                |                                                           |           |          |          |          |             |          |                    | 1              |  |
| enii EPA 533,1                           |       |                                                                                |                                                           |           |          |          |          |             |          |                    |                |  |
| T EPA 549.2                              | _     |                                                                                |                                                           |           |          |          |          |             |          |                    |                |  |
|                                          | -     |                                                                                |                                                           |           |          |          |          |             |          |                    | ļ              |  |
| T EPA 8015M                              | -     |                                                                                |                                                           |           |          |          |          |             |          |                    |                |  |
| or / 16or / 32or AMBER                   |       |                                                                                |                                                           |           |          |          |          | •           |          |                    |                |  |
| at / 16ot / 32oz JAR                     |       |                                                                                |                                                           |           |          |          |          |             |          |                    | <u> </u>       |  |
| OILSLEEVE                                |       |                                                                                |                                                           |           |          |          |          |             |          |                    | <u> </u>       |  |
| CB VIAL                                  |       |                                                                                |                                                           |           |          |          |          |             |          |                    | 1              |  |
| LASTIC BAG                               |       |                                                                                |                                                           |           |          |          |          |             |          |                    |                |  |
| EDLAR DAG                                |       |                                                                                |                                                           |           |          |          |          |             |          |                    |                |  |
| ERROUS IRON .                            |       |                                                                                |                                                           |           | 1        |          |          |             |          |                    | 1              |  |
| NCORE                                    |       |                                                                                |                                                           |           |          |          | ,        |             |          |                    | 4              |  |
| MART KIT ·                               | Ň     |                                                                                |                                                           |           |          |          |          |             |          |                    |                |  |
| UMMA CANISTER GL                         | _     | A                                                                              | A                                                         | A         | A        | A        | A        | Δ           | A        | Á.                 | A              |  |
|                                          |       |                                                                                |                                                           |           | <u>4</u> | 13 1     | 1        | <u></u>     |          | 11                 | 1.70           |  |



#### Chain of Custody and Cooler Receipt Form for 2308505 Page 3 of 3

| Submission #: 23-08505                                       |          |          |                 |             | T FORM     | _        |                 |               |               |                            |       |
|--------------------------------------------------------------|----------|----------|-----------------|-------------|------------|----------|-----------------|---------------|---------------|----------------------------|-------|
| SHIPPING INF<br>Fed Ex UPS G GSO<br>Pace Lab Field Sorvice C | / GLS I  | □ Ha     | nd Deliv<br>fy) | ery 🗆       | Ice Ch     | əst 🗀    | CONTA<br>None D | Box A         | -             | FREE LIG<br>YES O I<br>W / | 10 00 |
| Refrigerant: Ice D Blue Ic                                   | e        | None     | oti             | ter 🗆       | Commen     | its:     |                 |               |               |                            |       |
| Custody Seals Ice Chest D                                    |          | ontaine  |                 | None        | ф Солп     | nents:   |                 |               |               |                            |       |
| All samples received? Yes No                                 |          | _        |                 |             | Yes Q No   |          |                 | tion(s) mat   | ch COC?       | Yes U No                   | 0     |
| COC Received                                                 | Emiss    | ivity: 🚬 | C               | ontainer; g | SUNTY T    | hermomet | er ID: 33       | 7             | Date/Tim      | 10 4/24/2                  | 3     |
| VES INO                                                      | Temp     | erature: | (A) R           | 00m         | _•c /      | (c) Te   | mp              | •¢            |               | nit KV                     | 1030  |
| CAUDI E CONTANICOS                                           | . [      |          |                 |             |            | SAMPLE   | INUMBERS        |               | _             |                            |       |
| SAMPLE CONTAINERS                                            |          | 11       | . 2             | 3           | 4          | 5        | 6               | 7             | 8             | 9                          | 10    |
| OT PE UNPRES                                                 | _        |          |                 |             |            |          |                 |               |               | -                          | 1     |
| 4ex/Box/16oz PE UNPRES                                       |          |          |                 |             |            |          |                 |               |               |                            |       |
| 202 Cr*                                                      |          |          |                 |             |            | -        |                 |               |               |                            |       |
| OT INORGANIC CHEMICAL METALS                                 |          |          |                 |             |            |          |                 |               |               |                            |       |
| INORGANIC CHEMICAL METALS 40z / Soz /                        | Iéaz     |          |                 |             |            |          |                 |               |               |                            |       |
| PT CYANIDS                                                   |          |          |                 |             | 1          |          |                 |               |               |                            |       |
| PT NITROGEN FORMS                                            |          |          |                 |             |            |          |                 |               |               |                            | ->    |
| PT TOTAL SULFIDE                                             |          |          |                 |             |            |          |                 |               |               |                            |       |
| ZOR. NITRATE / NITRITE                                       |          |          |                 |             |            |          |                 |               |               |                            |       |
| PT TOTAL ORGANIC CARBON                                      | _        |          |                 |             |            |          | -               |               |               |                            |       |
| PT CHEMICAL OXYGEN DEMAND                                    |          |          |                 |             |            |          |                 |               |               |                            |       |
| PIA PHENOLICS                                                | _        |          |                 |             |            |          |                 |               |               |                            |       |
| 40ml VOA VIAL TRAVEL BLANK                                   | <u> </u> |          |                 |             |            |          |                 |               |               |                            |       |
| 0ml VOA VIAL                                                 | -        |          |                 |             |            |          |                 |               |               |                            |       |
| QT EPA 1664B                                                 | _        |          |                 |             |            |          |                 |               |               |                            |       |
| PTODOR                                                       | _        |          |                 |             |            |          |                 | :             |               | 8                          |       |
| RADIOLOGICAL                                                 |          |          |                 |             |            |          |                 |               |               |                            |       |
| BACTERIOLOGICAL                                              |          |          |                 |             |            |          |                 |               |               |                            |       |
| 0 ml VOA VIAL- 504                                           |          |          |                 |             |            |          |                 |               |               |                            |       |
| T EPA 508/608.3/8081A                                        |          |          |                 |             |            |          |                 |               |               |                            |       |
| 2T EPA 515.2/3151A                                           |          |          |                 |             |            |          |                 |               |               |                            |       |
| OT EPA 525.2                                                 |          |          |                 |             |            |          |                 | <u>.</u>      |               |                            |       |
| T EPA 525.2 TRAVEL BLANK                                     |          |          |                 |             |            |          |                 |               |               |                            |       |
| 0ml EPA 547                                                  | -        |          |                 |             |            |          |                 |               |               |                            |       |
| 0ml EPA 531.1<br>ez EPA 548.1                                |          |          |                 |             |            |          |                 |               |               |                            |       |
|                                                              |          |          |                 |             |            |          |                 |               |               |                            |       |
| T EPA 549.2                                                  |          |          |                 |             |            |          |                 |               |               |                            |       |
| T EPA 8015M                                                  |          |          |                 |             |            |          |                 |               |               |                            |       |
| T EPA \$200C                                                 |          |          |                 |             |            |          |                 |               |               |                            |       |
| m/16m/31oz AMBER                                             | _        |          |                 |             |            |          |                 |               |               |                            |       |
| nt / 16az / 32az JAR<br>DIL SLEEVE                           | -        |          |                 |             |            |          |                 |               |               |                            |       |
| CB VIAL                                                      |          |          |                 |             |            |          |                 |               |               |                            |       |
| LASTIC BAG                                                   | +        |          |                 |             |            |          |                 |               |               |                            |       |
| EDLAR BAG                                                    |          |          |                 |             |            |          |                 |               |               |                            |       |
| RROUS (RON                                                   | -        |          |                 |             |            |          |                 |               |               |                            |       |
| NCORE                                                        | -        |          |                 |             |            |          |                 |               |               |                            |       |
|                                                              |          |          |                 |             |            |          |                 |               |               |                            |       |
| MART KIT                                                     | <u> </u> |          |                 |             |            |          |                 |               |               |                            |       |
| UMMA CANISTER 61                                             | <u> </u> | A        |                 |             |            |          |                 |               |               |                            |       |
| mments:<br>mple Numbering Completed By:                      |          | w        |                 | P 1 2       |            | ula-     | 11/2            |               |               |                            |       |
| Actual / C = Corrected                                       |          | 1.8      |                 | Date/       | 11me: _4/3 | 123      |                 | (5/WPDecWord) | effectLA8_000 | Rev 23 05<br>BFORNBISAME   |       |



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

## Laboratory / Client Sample Cross Reference

| Laboratory | Client Sample Informati | on                   |                |                  |
|------------|-------------------------|----------------------|----------------|------------------|
| 2308505-01 | COC Number:             |                      | Receive Date:  | 04/29/2023 10:30 |
|            | Project Number:         |                      | Sampling Date: | 04/27/2023 12:17 |
|            | Sampling Location:      |                      | Sample Depth:  |                  |
|            | Sampling Point:         | AA-CL-20230427       | Lab Matrix:    | Air              |
|            | Sampled By:             | Client               | Sample Type:   | Vapor or Air     |
| 2308505-02 | COC Number:             |                      | Receive Date:  | 04/29/2023 10:30 |
|            | Project Number:         |                      | Sampling Date: | 04/27/2023 13:20 |
|            | Sampling Location:      |                      | Sample Depth:  |                  |
|            | Sampling Point:         | AA-BL-20230427       | Lab Matrix:    | Air              |
|            | Sampled By:             | Client               | Sample Type:   | Vapor or Air     |
| 308505-03  | COC Number:             |                      | Receive Date:  | 04/29/2023 10:30 |
|            | Project Number:         |                      | Sampling Date: | 04/27/2023 11:05 |
|            | Sampling Location:      |                      | Sample Depth:  |                  |
|            | Sampling Point:         | AA-710/10-20230427   | Lab Matrix:    | Air              |
|            | Sampled By:             | Client               | Sample Type:   | Vapor or Air     |
| 2308505-04 | COC Number:             |                      | Receive Date:  | 04/29/2023 10:30 |
|            | Project Number:         |                      | Sampling Date: | 04/27/2023 11:05 |
|            | Sampling Location:      |                      | Sample Depth:  |                  |
|            | Sampling Point:         | AA-710/10-20230427-D | Lab Matrix:    | Air              |
|            | Sampled By:             | Client               | Sample Type:   | Vapor or Air     |
| 2308505-05 | COC Number:             |                      | Receive Date:  | 04/29/2023 10:30 |
|            | Project Number:         |                      | Sampling Date: | 04/27/2023 12:00 |
|            | Sampling Location:      |                      | Sample Depth:  |                  |
|            | Sampling Point:         | AA-0.125MI-20230427  | Lab Matrix:    | Air              |
|            | Sampled By:             | Client               | Sample Type:   | Vapor or Air     |
| 2308505-06 | COC Number:             |                      | Receive Date:  | 04/29/2023 10:30 |
|            | Project Number:         |                      | Sampling Date: | 04/27/2023 13:10 |
|            | Sampling Location:      |                      | Sample Depth:  |                  |
|            | Sampling Point:         | AA-0.25MI-20230427   | Lab Matrix:    | Air              |
|            | Sampled By:             | Client               | Sample Type:   | Vapor or Air     |
| 308505-07  | COC Number:             |                      | Receive Date:  | 04/29/2023 10:30 |
|            | Project Number:         |                      | Sampling Date: | 04/27/2023 11:15 |
|            | Sampling Location:      |                      | Sample Depth:  |                  |
|            | Sampling Point:         | AA-0.5MI-20230427    | Lab Matrix:    | Air              |
|            | Sampled By:             | Client               | Sample Type:   | Vapor or Air     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com 

Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

## Laboratory / Client Sample Cross Reference

| Laboratory | Client Sample Information |                    |                |                  |  |  |  |  |  |
|------------|---------------------------|--------------------|----------------|------------------|--|--|--|--|--|
| 2308505-08 | COC Number:               |                    | Receive Date:  | 04/29/2023 10:30 |  |  |  |  |  |
|            | Project Number:           |                    | Sampling Date: | 04/27/2023 13:40 |  |  |  |  |  |
|            | Sampling Location:        |                    | Sample Depth:  |                  |  |  |  |  |  |
|            | Sampling Point:           | AA-0.75MI-20230427 | Lab Matrix:    | Air              |  |  |  |  |  |
|            | Sampled By:               | Client             | Sample Type:   | Vapor or Air     |  |  |  |  |  |
| 2308505-09 | COC Number:               |                    | Receive Date:  | 04/29/2023 10:30 |  |  |  |  |  |
|            | Project Number:           |                    | Sampling Date: | 04/27/2023 13:35 |  |  |  |  |  |
|            | Sampling Location:        |                    | Sample Depth:  |                  |  |  |  |  |  |
|            | Sampling Point:           | AA-PW1-20230427    | Lab Matrix:    | Air              |  |  |  |  |  |
|            | Sampled By:               | Client             | Sample Type:   | Vapor or Air     |  |  |  |  |  |
| 2308505-10 | COC Number:               |                    | Receive Date:  | 04/29/2023 10:30 |  |  |  |  |  |
|            | Project Number:           |                    | Sampling Date: | 04/27/2023 12:08 |  |  |  |  |  |
|            | Sampling Location:        |                    | Sample Depth:  |                  |  |  |  |  |  |
|            | Sampling Point:           | AA-PW2-20230427    | Lab Matrix:    | Air              |  |  |  |  |  |
|            | Sampled By:               | Client             | Sample Type:   | Vapor or Air     |  |  |  |  |  |
| 2308505-11 | COC Number:               |                    | Receive Date:  | 04/29/2023 10:30 |  |  |  |  |  |
|            | Project Number:           |                    | Sampling Date: | 04/27/2023 10:20 |  |  |  |  |  |
|            | Sampling Location:        |                    | Sample Depth:  |                  |  |  |  |  |  |
|            | Sampling Point:           | AA-PW3-20230427    | Lab Matrix:    | Air              |  |  |  |  |  |
|            | Sampled By:               | Client             | Sample Type:   | Vapor or Air     |  |  |  |  |  |



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23               | 08505-01 | Client Sampl | e Name: | AA-CL-20     | AA-CL-20230427, 4/27/2023 12:17:00PM, Client |               |            |              |     |  |  |
|---------------------------------|----------|--------------|---------|--------------|----------------------------------------------|---------------|------------|--------------|-----|--|--|
| Constituent                     |          | Result       | Units   | PQL          | MDL                                          | Method        | MB<br>Bias | Lab<br>Quals | DCN |  |  |
| Acetone                         |          | 13           | ug/m3   | 10           | 0.075                                        | EPA-TO-15-SIM | ND         | A01          | 1   |  |  |
| Benzene                         |          | 0.75         | ug/m3   | 0.050        | 0.0032                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Benzyl chloride                 |          | ND           | ug/m3   | 0.50         | 0.0052                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Carbon tetrachloride            |          | ND           | ug/m3   | 0.20         | 0.0063                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Chlorobenzene                   |          | ND           | ug/m3   | 0.10         | 0.0079                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Chloroform                      |          | ND           | ug/m3   | 0.050        | 0.0058                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| 1,2-Dibromoethane               |          | ND           | ug/m3   | 0.20         | 0.014                                        | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| 1,2-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.011                                        | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| 1,3-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.013                                        | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| ,4-Dichlorobenzene              |          | ND           | ug/m3   | 0.20         | 0.016                                        | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Dichlorodifluoromethane         |          | 2.8          | ug/m3   | 0.50         | 0.052                                        | EPA-TO-15-SIM | ND         | A01          | 1   |  |  |
| I,1-Dichloroethane              |          | ND           | ug/m3   | 0.050        | 0.0041                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| ,2-Dichloroethane               |          | ND           | ug/m3   | 0.10         | 0.0046                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| ,1-Dichloroethene               |          | ND           | ug/m3   | 0.050        | 0.0078                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| is-1,2-Dichloroethene           |          | ND           | ug/m3   | 0.050        | 0.0044                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| rans-1,2-Dichloroethene         |          | ND           | ug/m3   | 0.050        | 0.0075                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| rans-1,3-Dichloropropene        |          | ND           | ug/m3   | 0.050        | 0.013                                        | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| I,1-Difluoroethane              |          | 0.73         | ug/m3   | 5.0          | 0.0027                                       | EPA-TO-15-SIM | ND         | J            | 2   |  |  |
| Ethylbenzene                    |          | 0.36         | ug/m3   | 0.050        | 0.017                                        | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Methylene chloride              |          | 0.77         | ug/m3   | 0.20         | 0.0077                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Fetrachloroethene               |          | ND           | ug/m3   | 0.10         | 0.011                                        | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| oluene                          |          | 2.0          | ug/m3   | 1.0          | 0.062                                        | EPA-TO-15-SIM | ND         | A01          | 1   |  |  |
| I,1,1-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| 1,1,2-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Trichloroethene                 |          | ND           | ug/m3   | 0.10         | 0.0095                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Trichlorofluoromethane          |          | 1.4          | ug/m3   | 0.050        | 0.0057                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| I,1,2-Trichloro-1,2,2-trifluoro | ethane   | 0.59         | ug/m3   | 0.10         | 0.0078                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| /inyl chloride                  |          | ND           | ug/m3   | 0.020        | 0.0046                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| o- & m-Xylenes                  |          | 1.2          | ug/m3   | 0.050        | 0.0082                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| o-Xylene                        |          | 0.45         | ug/m3   | 0.050        | 0.0044                                       | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| Fotal Xylenes                   |          | 1.7          | ug/m3   | 0.10         | 0.013                                        | EPA-TO-15-SIM | ND         |              | 2   |  |  |
| I-Bromofluorobenzene (Surro     | gate)    | 88.0         | %       | 50 - 150 (LC | L - UCL)                                     | EPA-TO-15-SIM |            |              | 1   |  |  |
| 4-Bromofluorobenzene (Surro     | gate)    | 105          | %       | 50 - 150 (LC | L - UCL)                                     | EPA-TO-15-SIM |            |              | 2   |  |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

An results inseed in this report are for the exclusive use of the submitting party. Face Analytical assumes no responsionity for report are ration, separation, detachment 001424701 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample II | <b>D:</b> 2308505-01 | Client San     | nple Name:     | AA-CL-20230 | 427, 4/27/2023 | 27, 4/27/2023 12:17:00PM, Client |          |           |  |
|---------------|----------------------|----------------|----------------|-------------|----------------|----------------------------------|----------|-----------|--|
| Run           |                      |                |                |             |                |                                  | QC       |           |  |
| DCN           | Method               | Prep Date      | Date/Time      | Analyst     | Instrument     | Dilution                         | Batch ID |           |  |
| 1             | EPA-TO-15-SIM        | 05/05/23 12:29 | 05/07/23 03:16 | BEP         | MS-A1          | 10                               | B165569  | EPA TO-15 |  |
| 2             | EPA-TO-15-SIM        | 05/05/23 12:29 | 05/06/23 19:27 | BEP         | MS-A1          | 1                                | B165569  | EPA TO-15 |  |



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308505-01 | Client Sampl | t Sample Name: AA-CL-20230427, 4/27/2023 12:17:00PM, Client |     |     |            |            |              |     |
|----------------|------------|--------------|-------------------------------------------------------------|-----|-----|------------|------------|--------------|-----|
| Constituent    |            | Result       | Units                                                       | PQL | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 64           | ppmv                                                        | 2.0 | 1.8 | ASTM-D1946 | ND         |              | 1   |

| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| 1   | ASTM-D1946 | 05/09/23 08:02 | 05/09/23 13:41 | RMK     | GC-A1      | 1        | B165689  | No Prep     |



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 230              | 08505-02 | Client Sampl | e Name: | AA-BL-20     | 230427, 4/2 | 27/2023 1:20:00F | PM, Client |              |          |
|---------------------------------|----------|--------------|---------|--------------|-------------|------------------|------------|--------------|----------|
| Constituent                     |          | Result       | Units   | PQL          | MDL         | Method           | MB<br>Bias | Lab<br>Quals | DCN      |
| Acetone                         |          | 15           | ug/m3   | 10           | 0.075       | EPA-TO-15-SIM    | ND         | A01          | <u> </u> |
| Benzene                         |          | 0.75         | ug/m3   | 0.050        | 0.0032      | EPA-TO-15-SIM    | ND         |              | 2        |
| Benzyl chloride                 |          | ND           | ug/m3   | 0.50         | 0.0052      | EPA-TO-15-SIM    | ND         |              | 2        |
| Carbon tetrachloride            |          | ND           | ug/m3   | 0.20         | 0.0063      | EPA-TO-15-SIM    | ND         |              | 2        |
| Chlorobenzene                   |          | ND           | ug/m3   | 0.10         | 0.0079      | EPA-TO-15-SIM    | ND         |              | 2        |
| Chloroform                      |          | ND           | ug/m3   | 0.050        | 0.0058      | EPA-TO-15-SIM    | ND         |              | 2        |
| ,2-Dibromoethane                |          | ND           | ug/m3   | 0.20         | 0.014       | EPA-TO-15-SIM    | ND         |              | 2        |
| ,2-Dichlorobenzene              |          | ND           | ug/m3   | 0.20         | 0.011       | EPA-TO-15-SIM    | ND         |              | 2        |
| ,3-Dichlorobenzene              |          | ND           | ug/m3   | 0.20         | 0.013       | EPA-TO-15-SIM    | ND         |              | 2        |
| I,4-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.016       | EPA-TO-15-SIM    | ND         |              | 2        |
| Dichlorodifluoromethane         |          | 3.2          | ug/m3   | 0.50         | 0.052       | EPA-TO-15-SIM    | ND         | A01          | 1        |
| ,1-Dichloroethane               |          | ND           | ug/m3   | 0.050        | 0.0041      | EPA-TO-15-SIM    | ND         |              | 2        |
| ,2-Dichloroethane               |          | ND           | ug/m3   | 0.10         | 0.0046      | EPA-TO-15-SIM    | ND         |              | 2        |
| ,1-Dichloroethene               |          | ND           | ug/m3   | 0.050        | 0.0078      | EPA-TO-15-SIM    | ND         |              | 2        |
| is-1,2-Dichloroethene           |          | ND           | ug/m3   | 0.050        | 0.0044      | EPA-TO-15-SIM    | ND         |              | 2        |
| rans-1,2-Dichloroethene         |          | ND           | ug/m3   | 0.050        | 0.0075      | EPA-TO-15-SIM    | ND         |              | 2        |
| rans-1,3-Dichloropropene        |          | ND           | ug/m3   | 0.050        | 0.013       | EPA-TO-15-SIM    | ND         |              | 2        |
| ,1-Difluoroethane               |          | 0.78         | ug/m3   | 5.0          | 0.0027      | EPA-TO-15-SIM    | ND         | J            | 2        |
| Ethylbenzene                    |          | 0.40         | ug/m3   | 0.050        | 0.017       | EPA-TO-15-SIM    | ND         |              | 2        |
| lethylene chloride              |          | ND           | ug/m3   | 0.20         | 0.0077      | EPA-TO-15-SIM    | ND         |              | 2        |
| etrachloroethene                |          | ND           | ug/m3   | 0.10         | 0.011       | EPA-TO-15-SIM    | ND         |              | 2        |
| oluene                          |          | 2.5          | ug/m3   | 1.0          | 0.062       | EPA-TO-15-SIM    | ND         | A01          | 1        |
| ,1,1-Trichloroethane            |          | ND           | ug/m3   | 0.10         | 0.0055      | EPA-TO-15-SIM    | ND         |              | 2        |
| 1,1,2-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055      | EPA-TO-15-SIM    | ND         |              | 2        |
| richloroethene                  |          | ND           | ug/m3   | 0.10         | 0.0095      | EPA-TO-15-SIM    | ND         |              | 2        |
| Frichlorofluoromethane          |          | 1.3          | ug/m3   | 0.050        | 0.0057      | EPA-TO-15-SIM    | ND         |              | 2        |
| 1,1,2-Trichloro-1,2,2-trifluoro | ethane   | 0.59         | ug/m3   | 0.10         | 0.0078      | EPA-TO-15-SIM    | ND         |              | 2        |
| /inyl chloride                  |          | ND           | ug/m3   | 0.020        | 0.0046      | EPA-TO-15-SIM    | ND         |              | 2        |
| o- & m-Xylenes                  |          | 1.4          | ug/m3   | 0.050        | 0.0082      | EPA-TO-15-SIM    | ND         |              | 2        |
| o-Xylene                        |          | 0.50         | ug/m3   | 0.050        | 0.0044      | EPA-TO-15-SIM    | ND         |              | 2        |
| Fotal Xylenes                   |          | 1.9          | ug/m3   | 0.10         | 0.013       | EPA-TO-15-SIM    | ND         |              | 2        |
| 4-Bromofluorobenzene (Surro     | gate)    | 86.0         | %       | 50 - 150 (LC | L - UCL)    | EPA-TO-15-SIM    |            |              | 1        |
| 4-Bromofluorobenzene (Surro     | gate)    | 104          | %       | 50 - 150 (LC | L - UCL)    | EPA-TO-15-SIM    |            |              | 2        |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

An results listed in this report are for the exclusive use of the submitting party. Face Analytical assumes no responsibility for report are ratio, separation, detachine 001424701 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2308505-02 Client Sample Name: |               |                | ple Name:      | AA-BL-202304 | 427, 4/27/2023 | 1:20:00PM, | Client   |           |
|-----------------------------------------------|---------------|----------------|----------------|--------------|----------------|------------|----------|-----------|
| Run                                           |               |                |                |              |                |            | QC       |           |
| DCN                                           | Method        | Prep Date      | Date/Time      | Analyst      | Instrument     | Dilution   | Batch ID |           |
| 1                                             | EPA-TO-15-SIM | 05/05/23 12:29 | 05/07/23 03:47 | BEP          | MS-A1          | 10         | B165569  | EPA TO-15 |
| 2                                             | EPA-TO-15-SIM | 05/05/23 12:29 | 05/06/23 20:04 | BEP          | MS-A1          | 1          | B165569  | EPA TO-15 |



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308505-02 | Client Sampl | Client Sample Name: AA-BL-20230427, 4/27/2023 1:20:00PM, Client |     |     |            |            |              |     |
|----------------|------------|--------------|-----------------------------------------------------------------|-----|-----|------------|------------|--------------|-----|
| Constituent    |            | Result       | Units                                                           | PQL | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 2.2          | ppmv                                                            | 2.0 | 1.8 | ASTM-D1946 | ND         |              | 1   |

| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| 1   | ASTM-D1946 | 05/09/23 08:02 | 05/09/23 14:01 | RMK     | GC-A1      | 1        | B165689  | No Prep     |



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 230850                | 5-03 Client Sampl | e Name: | AA-710/1     | AA-710/10-20230427, 4/27/2023 11:05:00AM, Client |               |            |              |     |  |
|--------------------------------------|-------------------|---------|--------------|--------------------------------------------------|---------------|------------|--------------|-----|--|
| Constituent                          | Result            | Units   | PQL          | MDL                                              | Method        | MB<br>Bias | Lab<br>Quals | DCN |  |
| Acetone                              | 10                | ug/m3   | 10           | 0.075                                            | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| Benzene                              | 0.85              | ug/m3   | 0.050        | 0.0032                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Benzyl chloride                      | ND                | ug/m3   | 0.50         | 0.0052                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Carbon tetrachloride                 | ND                | ug/m3   | 0.20         | 0.0063                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chlorobenzene                        | ND                | ug/m3   | 0.10         | 0.0079                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chloroform                           | ND                | ug/m3   | 0.050        | 0.0058                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dibromoethane                    | ND                | ug/m3   | 0.20         | 0.014                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dichlorobenzene                  | ND                | ug/m3   | 0.20         | 0.011                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,3-Dichlorobenzene                  | ND                | ug/m3   | 0.20         | 0.013                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,4-Dichlorobenzene                  | ND                | ug/m3   | 0.20         | 0.016                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| Dichlorodifluoromethane              | 2.8               | ug/m3   | 0.50         | 0.052                                            | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| I,1-Dichloroethane                   | ND                | ug/m3   | 0.050        | 0.0041                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dichloroethane                   | ND                | ug/m3   | 0.10         | 0.0046                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| I,1-Dichloroethene                   | ND                | ug/m3   | 0.050        | 0.0078                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| sis-1,2-Dichloroethene               | ND                | ug/m3   | 0.050        | 0.0044                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| rans-1,2-Dichloroethene              | ND                | ug/m3   | 0.050        | 0.0075                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| rans-1,3-Dichloropropene             | ND                | ug/m3   | 0.050        | 0.013                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| I,1-Difluoroethane                   | 0.78              | ug/m3   | 5.0          | 0.0027                                           | EPA-TO-15-SIM | ND         | J            | 2   |  |
| Ethylbenzene                         | 0.42              | ug/m3   | 0.050        | 0.017                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| Methylene chloride                   | ND                | ug/m3   | 0.20         | 0.0077                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Fetrachloroethene                    | ND                | ug/m3   | 0.10         | 0.011                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| Foluene                              | 2.0               | ug/m3   | 1.0          | 0.062                                            | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| 1,1,1-Trichloroethane                | ND                | ug/m3   | 0.10         | 0.0055                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1,2-Trichloroethane                | ND                | ug/m3   | 0.10         | 0.0055                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Frichloroethene                      | ND                | ug/m3   | 0.10         | 0.0095                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Frichlorofluoromethane               | 1.4               | ug/m3   | 0.050        | 0.0057                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| I,1,2-Trichloro-1,2,2-trifluoroethar | ne 0.61           | ug/m3   | 0.10         | 0.0078                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| /inyl chloride                       | ND                | ug/m3   | 0.020        | 0.0046                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| o- & m-Xylenes                       | 1.5               | ug/m3   | 0.050        | 0.0082                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| o-Xylene                             | 0.53              | ug/m3   | 0.050        | 0.0044                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Fotal Xylenes                        | 2.0               | ug/m3   | 0.10         | 0.013                                            | EPA-TO-15-SIM | ND         |              | 2   |  |
| 4-Bromofluorobenzene (Surrogate)     | 87.4              | %       | 50 - 150 (LC | L - UCL)                                         | EPA-TO-15-SIM |            |              | 1   |  |
| 4-Bromofluorobenzene (Surrogate)     | 102               | %       | 50 - 150 (LC | L - UCL)                                         | EPA-TO-15-SIM |            |              | 2   |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11424701 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001424701



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | 2308505-03    | Client San     | nple Name:     | 230427, 4/27/20 | 0427, 4/27/2023 11:05:00AM, Client |          |          |           |
|---------------|---------------|----------------|----------------|-----------------|------------------------------------|----------|----------|-----------|
|               |               | Run            |                |                 |                                    | QC       |          |           |
| DCN           | Method        | Prep Date      | Date/Time      | Analyst         | Instrument                         | Dilution | Batch ID |           |
| 1             | EPA-TO-15-SIM | 05/05/23 12:29 | 05/07/23 04:18 | BEP             | MS-A1                              | 10       | B165569  | EPA TO-15 |
| 2             | EPA-TO-15-SIM | 05/05/23 12:29 | 05/06/23 20:42 | BEP             | MS-A1                              | 1        | B165569  | EPA TO-15 |



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308505-03 | Client Sampl | ent Sample Name: AA-710/10-20230427, 4/27/2023 11:05:00AM, Client |     |     |            |            |              |     |
|----------------|------------|--------------|-------------------------------------------------------------------|-----|-----|------------|------------|--------------|-----|
| Constituent    |            | Result       | Units                                                             | PQL | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 2.2          | ppmv                                                              | 2.0 | 1.8 | ASTM-D1946 | ND         |              | 1   |

|     |            |                | Run            |         |            |          | QC       |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/09/23 08:02 | 05/09/23 15:01 | RMK     | GC-A1      | 1        | B165689  | No Prep     |



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 230               | 8505-04 Client Sar | mple Name: | AA-710/1     |           |               |            |              |          |
|----------------------------------|--------------------|------------|--------------|-----------|---------------|------------|--------------|----------|
| Constituent                      | Result             | Units      | PQL          | MDL       | Method        | MB<br>Bias | Lab<br>Quals | DCN      |
| Acetone                          | 16                 | ug/m3      | 10           | 0.075     | EPA-TO-15-SIM | ND         | A01          | <u> </u> |
| Benzene                          | 0.82               | ug/m3      | 0.050        | 0.0032    | EPA-TO-15-SIM | ND         |              | 2        |
| Benzyl chloride                  | ND                 | ug/m3      | 0.50         | 0.0052    | EPA-TO-15-SIM | ND         |              | 2        |
| Carbon tetrachloride             | ND                 | ug/m3      | 0.20         | 0.0063    | EPA-TO-15-SIM | ND         |              | 2        |
| Chlorobenzene                    | ND                 | ug/m3      | 0.10         | 0.0079    | EPA-TO-15-SIM | ND         |              | 2        |
| Chloroform                       | ND                 | ug/m3      | 0.050        | 0.0058    | EPA-TO-15-SIM | ND         |              | 2        |
| 1,2-Dibromoethane                | ND                 | ug/m3      | 0.20         | 0.014     | EPA-TO-15-SIM | ND         |              | 2        |
| 1,2-Dichlorobenzene              | ND                 | ug/m3      | 0.20         | 0.011     | EPA-TO-15-SIM | ND         |              | 2        |
| 1,3-Dichlorobenzene              | ND                 | ug/m3      | 0.20         | 0.013     | EPA-TO-15-SIM | ND         |              | 2        |
| 1,4-Dichlorobenzene              | ND                 | ug/m3      | 0.20         | 0.016     | EPA-TO-15-SIM | ND         |              | 2        |
| Dichlorodifluoromethane          | 3.2                | ug/m3      | 0.50         | 0.052     | EPA-TO-15-SIM | ND         | A01          | 1        |
| 1,1-Dichloroethane               | ND                 | ug/m3      | 0.050        | 0.0041    | EPA-TO-15-SIM | ND         |              | 2        |
| 1,2-Dichloroethane               | ND                 | ug/m3      | 0.10         | 0.0046    | EPA-TO-15-SIM | ND         |              | 2        |
| I,1-Dichloroethene               | ND                 | ug/m3      | 0.050        | 0.0078    | EPA-TO-15-SIM | ND         |              | 2        |
| cis-1,2-Dichloroethene           | ND                 | ug/m3      | 0.050        | 0.0044    | EPA-TO-15-SIM | ND         |              | 2        |
| rans-1,2-Dichloroethene          | ND                 | ug/m3      | 0.050        | 0.0075    | EPA-TO-15-SIM | ND         |              | 2        |
| rans-1,3-Dichloropropene         | ND                 | ug/m3      | 0.050        | 0.013     | EPA-TO-15-SIM | ND         |              | 2        |
| 1,1-Difluoroethane               | 0.71               | ug/m3      | 5.0          | 0.0027    | EPA-TO-15-SIM | ND         | J            | 2        |
| Ethylbenzene                     | 0.40               | ug/m3      | 0.050        | 0.017     | EPA-TO-15-SIM | ND         |              | 2        |
| Methylene chloride               | ND                 | ug/m3      | 0.20         | 0.0077    | EPA-TO-15-SIM | ND         |              | 2        |
| Tetrachloroethene                | ND                 | ug/m3      | 0.10         | 0.011     | EPA-TO-15-SIM | ND         |              | 2        |
| Foluene                          | 2.4                | ug/m3      | 1.0          | 0.062     | EPA-TO-15-SIM | ND         | A01          | 1        |
| 1,1,1-Trichloroethane            | ND                 | ug/m3      | 0.10         | 0.0055    | EPA-TO-15-SIM | ND         |              | 2        |
| 1,1,2-Trichloroethane            | ND                 | ug/m3      | 0.10         | 0.0055    | EPA-TO-15-SIM | ND         |              | 2        |
| Frichloroethene                  | ND                 | ug/m3      | 0.10         | 0.0095    | EPA-TO-15-SIM | ND         |              | 2        |
| Trichlorofluoromethane           | 1.4                | ug/m3      | 0.050        | 0.0057    | EPA-TO-15-SIM | ND         |              | 2        |
| I,1,2-Trichloro-1,2,2-trifluoroe | ethane 0.59        | ug/m3      | 0.10         | 0.0078    | EPA-TO-15-SIM | ND         |              | 2        |
| /inyl chloride                   | ND                 | ug/m3      | 0.020        | 0.0046    | EPA-TO-15-SIM | ND         |              | 2        |
| o- & m-Xylenes                   | 1.4                | ug/m3      | 0.050        | 0.0082    | EPA-TO-15-SIM | ND         |              | 2        |
| o-Xylene                         | 0.52               | ug/m3      | 0.050        | 0.0044    | EPA-TO-15-SIM | ND         |              | 2        |
| Fotal Xylenes                    | 1.9                | ug/m3      | 0.10         | 0.013     | EPA-TO-15-SIM | ND         |              | 2        |
| 4-Bromofluorobenzene (Surrog     | gate) 87.7         | %          | 50 - 150 (LC | CL - UCL) | EPA-TO-15-SIM |            |              | 1        |
| 4-Bromofluorobenzene (Surrog     | gate) 109          | %          | 50 - 150 (LC | CL - UCL) | EPA-TO-15-SIM |            |              | 2        |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1001424701 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2308505-04 Client Sample Name: A |               |                | AA-710/10-20   | 230427-D, 4/27/ | 2023 11:05: | 00AM, Client | t        |           |
|-------------------------------------------------|---------------|----------------|----------------|-----------------|-------------|--------------|----------|-----------|
|                                                 |               |                | Run            |                 |             |              | QC       |           |
| DCN                                             | Method        | Prep Date      | Date/Time      | Analyst         | Instrument  | Dilution     | Batch ID |           |
| 1                                               | EPA-TO-15-SIM | 05/05/23 12:29 | 05/07/23 04:49 | BEP             | MS-A1       | 10           | B165569  | EPA TO-15 |
| 2                                               | EPA-TO-15-SIM | 05/05/23 12:29 | 05/06/23 21:19 | BEP             | MS-A1       | 1            | B165569  | EPA TO-15 |



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308505-04 | Client Sampl | e Name: | AA-710/10 | 0-2023042 | 7-D, 4/27/2023 1 | 11:05:00AM, Client |              |     |
|----------------|------------|--------------|---------|-----------|-----------|------------------|--------------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL       | MDL       | Method           | MB<br>Bias         | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 2.1          | ppmv    | 2.0       | 1.8       | ASTM-D1946       | ND                 |              | 1   |

|     |            |                | Run            |         |            |          | QC       |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/09/23 08:02 | 05/09/23 15:22 | RMK     | GC-A1      | 1        | B165689  | No Prep     |



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2308505-05             | Client Sample | Client Sample Name: |              |          | AA-0.125MI-20230427, 4/27/2023 12:00:00PM, Client |            |              |     |  |  |  |
|---------------------------------------|---------------|---------------------|--------------|----------|---------------------------------------------------|------------|--------------|-----|--|--|--|
| Constituent                           | Result        | Units               | PQL          | MDL      | Method                                            | MB<br>Bias | Lab<br>Quals | DCN |  |  |  |
| Acetone                               | 12            | ug/m3               | 10           | 0.075    | EPA-TO-15-SIM                                     | ND         | A01          | 1   |  |  |  |
| Benzene                               | 0.79          | ug/m3               | 0.050        | 0.0032   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| Benzyl chloride                       | ND            | ug/m3               | 0.50         | 0.0052   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| Carbon tetrachloride                  | ND            | ug/m3               | 0.20         | 0.0063   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| Chlorobenzene                         | ND            | ug/m3               | 0.10         | 0.0079   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| Chloroform                            | ND            | ug/m3               | 0.050        | 0.0058   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| 1,2-Dibromoethane                     | ND            | ug/m3               | 0.20         | 0.014    | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| 1,2-Dichlorobenzene                   | ND            | ug/m3               | 0.20         | 0.011    | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| 1,3-Dichlorobenzene                   | ND            | ug/m3               | 0.20         | 0.013    | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| 1,4-Dichlorobenzene                   | ND            | ug/m3               | 0.20         | 0.016    | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| Dichlorodifluoromethane               | 2.9           | ug/m3               | 0.50         | 0.052    | EPA-TO-15-SIM                                     | ND         | A01          | 1   |  |  |  |
| 1,1-Dichloroethane                    | ND            | ug/m3               | 0.050        | 0.0041   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| 1,2-Dichloroethane                    | ND            | ug/m3               | 0.10         | 0.0046   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| 1,1-Dichloroethene                    | ND            | ug/m3               | 0.050        | 0.0078   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| cis-1,2-Dichloroethene                | ND            | ug/m3               | 0.050        | 0.0044   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| trans-1,2-Dichloroethene              | ND            | ug/m3               | 0.050        | 0.0075   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| trans-1,3-Dichloropropene             | ND            | ug/m3               | 0.050        | 0.013    | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| 1,1-Difluoroethane                    | 0.84          | ug/m3               | 5.0          | 0.0027   | EPA-TO-15-SIM                                     | ND         | J            | 2   |  |  |  |
| Ethylbenzene                          | 0.37          | ug/m3               | 0.050        | 0.017    | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| Methylene chloride                    | ND            | ug/m3               | 0.20         | 0.0077   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| Tetrachloroethene                     | ND            | ug/m3               | 0.10         | 0.011    | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| Toluene                               | 1.9           | ug/m3               | 1.0          | 0.062    | EPA-TO-15-SIM                                     | ND         | A01          | 1   |  |  |  |
| 1,1,1-Trichloroethane                 | ND            | ug/m3               | 0.10         | 0.0055   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| 1,1,2-Trichloroethane                 | ND            | ug/m3               | 0.10         | 0.0055   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| Trichloroethene                       | ND            | ug/m3               | 0.10         | 0.0095   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| Trichlorofluoromethane                | 1.3           | ug/m3               | 0.050        | 0.0057   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.58          | ug/m3               | 0.10         | 0.0078   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| /inyl chloride                        | ND            | ug/m3               | 0.020        | 0.0046   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| o- & m-Xylenes                        | 1.3           | ug/m3               | 0.050        | 0.0082   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| o-Xylene                              | 0.47          | ug/m3               | 0.050        | 0.0044   | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| Fotal Xylenes                         | 1.8           | ug/m3               | 0.10         | 0.013    | EPA-TO-15-SIM                                     | ND         |              | 2   |  |  |  |
| 4-Bromofluorobenzene (Surrogate)      | 86.6          | %                   | 50 - 150 (LC | L - UCL) | EPA-TO-15-SIM                                     |            |              | 1   |  |  |  |
| 4-Bromofluorobenzene (Surrogate)      | 106           | %                   | 50 - 150 (LC | L - UCL) | EPA-TO-15-SIM                                     |            |              | 2   |  |  |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11424701 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001424701



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample II | BCL Sample ID: 2308505-05 Client Sample Name: |                |                | AA-0.125MI-20230427, 4/27/2023 12:00:00PM, Client |            |          |          |           |  |
|---------------|-----------------------------------------------|----------------|----------------|---------------------------------------------------|------------|----------|----------|-----------|--|
|               |                                               | -              | Run            |                                                   |            |          | QC       |           |  |
| DCN           | Method                                        | Prep Date      | Date/Time      | Analyst                                           | Instrument | Dilution | Batch ID |           |  |
| 1             | EPA-TO-15-SIM                                 | 05/05/23 12:29 | 05/07/23 05:20 | BEP                                               | MS-A1      | 10       | B165569  | EPA TO-15 |  |
| 2             | EPA-TO-15-SIM                                 | 05/05/23 12:29 | 05/06/23 21:57 | BEP                                               | MS-A1      | 1        | B165569  | EPA TO-15 |  |



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308505-05 | Client Sampl | e Name: | AA-0.125I | MI-202304 | 27, 4/27/2023 12 | :00:00PM, Cl |              |     |
|----------------|------------|--------------|---------|-----------|-----------|------------------|--------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL       | MDL       | Method           | MB<br>Bias   | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 28           | ppmv    | 2.0       | 1.8       | ASTM-D1946       | ND           |              | 1   |

|     |            |                | Run            |         |            |          | QC       |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/09/23 08:02 | 05/09/23 15:58 | RMK     | GC-A1      | 1        | B165689  | No Prep     |



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 230              | 08505-06 | Client Sampl | e Name: | AA-0.25N     | AA-0.25MI-20230427, 4/27/2023 1:10:00PM, Client |               |            |              |     |  |
|---------------------------------|----------|--------------|---------|--------------|-------------------------------------------------|---------------|------------|--------------|-----|--|
| Constituent                     |          | Result       | Units   | PQL          | MDL                                             | Method        | MB<br>Bias | Lab<br>Quals | DCN |  |
| Acetone                         |          | 16           | ug/m3   | 10           | 0.075                                           | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| Benzene                         |          | 0.83         | ug/m3   | 0.050        | 0.0032                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| Benzyl chloride                 |          | ND           | ug/m3   | 0.50         | 0.0052                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| Carbon tetrachloride            |          | ND           | ug/m3   | 0.20         | 0.0063                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chlorobenzene                   |          | ND           | ug/m3   | 0.10         | 0.0079                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| Chloroform                      |          | ND           | ug/m3   | 0.050        | 0.0058                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dibromoethane               |          | ND           | ug/m3   | 0.20         | 0.014                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.011                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,3-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.013                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,4-Dichlorobenzene             |          | ND           | ug/m3   | 0.20         | 0.016                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Dichlorodifluoromethane         |          | 3.2          | ug/m3   | 0.50         | 0.052                                           | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| 1,1-Dichloroethane              |          | ND           | ug/m3   | 0.050        | 0.0041                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,2-Dichloroethane              |          | ND           | ug/m3   | 0.10         | 0.0046                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1-Dichloroethene              |          | ND           | ug/m3   | 0.050        | 0.0078                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| cis-1,2-Dichloroethene          |          | ND           | ug/m3   | 0.050        | 0.0044                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| trans-1,2-Dichloroethene        |          | ND           | ug/m3   | 0.050        | 0.0075                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| trans-1,3-Dichloropropene       |          | ND           | ug/m3   | 0.050        | 0.013                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1-Difluoroethane              |          | 0.83         | ug/m3   | 5.0          | 0.0027                                          | EPA-TO-15-SIM | ND         | J            | 2   |  |
| Ethylbenzene                    |          | 0.50         | ug/m3   | 0.050        | 0.017                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Methylene chloride              |          | ND           | ug/m3   | 0.20         | 0.0077                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| Tetrachloroethene               |          | ND           | ug/m3   | 0.10         | 0.011                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| Foluene                         |          | 2.6          | ug/m3   | 1.0          | 0.062                                           | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| 1,1,1-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1,2-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0055                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| Trichloroethene                 |          | ND           | ug/m3   | 0.10         | 0.0095                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| Trichlorofluoromethane          |          | 1.4          | ug/m3   | 0.050        | 0.0057                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| 1,1,2-Trichloro-1,2,2-trifluoro | ethane   | 0.59         | ug/m3   | 0.10         | 0.0078                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| Vinyl chloride                  |          | ND           | ug/m3   | 0.020        | 0.0046                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| p- & m-Xylenes                  |          | 1.8          | ug/m3   | 0.050        | 0.0082                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| o-Xylene                        |          | 0.66         | ug/m3   | 0.050        | 0.0044                                          | EPA-TO-15-SIM | ND         |              | 2   |  |
| Total Xylenes                   |          | 2.5          | ug/m3   | 0.10         | 0.013                                           | EPA-TO-15-SIM | ND         |              | 2   |  |
| 4-Bromofluorobenzene (Surro     | gate)    | 85.5         | %       | 50 - 150 (LC | L - UCL)                                        | EPA-TO-15-SIM |            |              | 1   |  |
| 4-Bromofluorobenzene (Surro     | gate)    | 108          | %       | 50 - 150 (LC | L - UCL)                                        | EPA-TO-15-SIM |            |              | 2   |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11424701 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001424701



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample I | <b>D:</b> 2308505-06 | Client San     | nple Name:     | AA-0.25MI-20 | 230427, 4/27/20 | 23 1:10:00F | PM, Client |           |
|--------------|----------------------|----------------|----------------|--------------|-----------------|-------------|------------|-----------|
|              |                      |                | Run            |              |                 |             | QC         |           |
| DCN          | Method               | Prep Date      | Date/Time      | Analyst      | Instrument      | Dilution    | Batch ID   |           |
| 1            | EPA-TO-15-SIM        | 05/05/23 12:29 | 05/07/23 05:51 | BEP          | MS-A1           | 10          | B165569    | EPA TO-15 |
| 2            | EPA-TO-15-SIM        | 05/05/23 12:29 | 05/06/23 22:34 | BEP          | MS-A1           | 1           | B165569    | EPA TO-15 |



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308505-06 | Client Sampl | e Name: | AA-0.25M | 1-20230427 | 7, 4/27/2023 | 1:10:00PM, Client |              |     |
|----------------|------------|--------------|---------|----------|------------|--------------|-------------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL        | Method       | MB<br>Bias        | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 3.9          | ppmv    | 2.0      | 1.8        | ASTM-D1946   | ND                |              | 1   |

|     |            |                | Run            |         |            |          | QC       |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/09/23 08:03 | 05/09/23 17:17 | RMK     | GC-A1      | 1        | B165690  | No Prep     |



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2308505-0              | 7 Client Sample | Name: | AA-0.5MI     | AA-0.5MI-20230427, 4/27/2023 11:15:00AM, Client |               |            |              |     |
|---------------------------------------|-----------------|-------|--------------|-------------------------------------------------|---------------|------------|--------------|-----|
| Constituent                           | Result          | Units | PQL          | MDL                                             | Method        | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                               | 10              | ug/m3 | 10           | 0.075                                           | EPA-TO-15-SIM | ND         | A01          | 1   |
| Benzene                               | 0.70            | ug/m3 | 0.050        | 0.0032                                          | EPA-TO-15-SIM | ND         |              | 2   |
| Benzyl chloride                       | ND              | ug/m3 | 0.50         | 0.0052                                          | EPA-TO-15-SIM | ND         |              | 2   |
| Carbon tetrachloride                  | ND              | ug/m3 | 0.20         | 0.0063                                          | EPA-TO-15-SIM | ND         |              | 2   |
| Chlorobenzene                         | ND              | ug/m3 | 0.10         | 0.0079                                          | EPA-TO-15-SIM | ND         |              | 2   |
| Chloroform                            | ND              | ug/m3 | 0.050        | 0.0058                                          | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dibromoethane                     | ND              | ug/m3 | 0.20         | 0.014                                           | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dichlorobenzene                   | ND              | ug/m3 | 0.20         | 0.011                                           | EPA-TO-15-SIM | ND         |              | 2   |
| 1,3-Dichlorobenzene                   | ND              | ug/m3 | 0.20         | 0.013                                           | EPA-TO-15-SIM | ND         |              | 2   |
| 1,4-Dichlorobenzene                   | ND              | ug/m3 | 0.20         | 0.016                                           | EPA-TO-15-SIM | ND         |              | 2   |
| Dichlorodifluoromethane               | 2.8             | ug/m3 | 0.50         | 0.052                                           | EPA-TO-15-SIM | ND         | A01          | 1   |
| 1,1-Dichloroethane                    | ND              | ug/m3 | 0.050        | 0.0041                                          | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dichloroethane                    | ND              | ug/m3 | 0.10         | 0.0046                                          | EPA-TO-15-SIM | ND         |              | 2   |
| I,1-Dichloroethene                    | ND              | ug/m3 | 0.050        | 0.0078                                          | EPA-TO-15-SIM | ND         |              | 2   |
| cis-1,2-Dichloroethene                | ND              | ug/m3 | 0.050        | 0.0044                                          | EPA-TO-15-SIM | ND         |              | 2   |
| rans-1,2-Dichloroethene               | ND              | ug/m3 | 0.050        | 0.0075                                          | EPA-TO-15-SIM | ND         |              | 2   |
| rans-1,3-Dichloropropene              | ND              | ug/m3 | 0.050        | 0.013                                           | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Difluoroethane                    | 0.95            | ug/m3 | 5.0          | 0.0027                                          | EPA-TO-15-SIM | ND         | J            | 2   |
| Ethylbenzene                          | 0.36            | ug/m3 | 0.050        | 0.017                                           | EPA-TO-15-SIM | ND         |              | 2   |
| Methylene chloride                    | ND              | ug/m3 | 0.20         | 0.0077                                          | EPA-TO-15-SIM | ND         |              | 2   |
| Fetrachloroethene                     | ND              | ug/m3 | 0.10         | 0.011                                           | EPA-TO-15-SIM | ND         |              | 2   |
| Foluene                               | 1.8             | ug/m3 | 1.0          | 0.062                                           | EPA-TO-15-SIM | ND         | A01          | 1   |
| I,1,1-Trichloroethane                 | ND              | ug/m3 | 0.10         | 0.0055                                          | EPA-TO-15-SIM | ND         |              | 2   |
| I,1,2-Trichloroethane                 | ND              | ug/m3 | 0.10         | 0.0055                                          | EPA-TO-15-SIM | ND         |              | 2   |
| Trichloroethene                       | ND              | ug/m3 | 0.10         | 0.0095                                          | EPA-TO-15-SIM | ND         |              | 2   |
| Frichlorofluoromethane                | 1.4             | ug/m3 | 0.050        | 0.0057                                          | EPA-TO-15-SIM | ND         |              | 2   |
| I,1,2-Trichloro-1,2,2-trifluoroethane | 0.59            | ug/m3 | 0.10         | 0.0078                                          | EPA-TO-15-SIM | ND         |              | 2   |
| /inyl chloride                        | ND              | ug/m3 | 0.020        | 0.0046                                          | EPA-TO-15-SIM | ND         |              | 2   |
| o- & m-Xylenes                        | 1.3             | ug/m3 | 0.050        | 0.0082                                          | EPA-TO-15-SIM | ND         |              | 2   |
| o-Xylene                              | 0.45            | ug/m3 | 0.050        | 0.0044                                          | EPA-TO-15-SIM | ND         |              | 2   |
| Fotal Xylenes                         | 1.7             | ug/m3 | 0.10         | 0.013                                           | EPA-TO-15-SIM | ND         |              | 2   |
| 1-Bromofluorobenzene (Surrogate)      | 85.2            | %     | 50 - 150 (LC | L - UCL)                                        | EPA-TO-15-SIM |            |              | 1   |
| I-Bromofluorobenzene (Surrogate)      | 104             | %     | 50 - 150 (LC | L - UCL)                                        | EPA-TO-15-SIM |            |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11424701 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001424701



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2308505-07 Client Sample Name: |               |                | AA-0.5MI-202   | 30427, 4/27/202 | 3 11:15:00A | M, Client |          |           |
|-----------------------------------------------|---------------|----------------|----------------|-----------------|-------------|-----------|----------|-----------|
|                                               |               |                | Run            |                 |             |           | QC       |           |
| DCN                                           | Method        | Prep Date      | Date/Time      | Analyst         | Instrument  | Dilution  | Batch ID |           |
| 1                                             | EPA-TO-15-SIM | 05/05/23 12:29 | 05/07/23 06:22 | BEP             | MS-A1       | 10        | B165569  | EPA TO-15 |
| 2                                             | EPA-TO-15-SIM | 05/05/23 12:29 | 05/06/23 23:12 | BEP             | MS-A1       | 1         | B165569  | EPA TO-15 |



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308505-07 | Client Sampl | e Name: | AA-0.5MI- | 20230427 | , 4/27/2023 11:15 | t          |              |     |
|----------------|------------|--------------|---------|-----------|----------|-------------------|------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL       | MDL      | Method            | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 5.1          | ppmv    | 2.0       | 1.8      | ASTM-D1946        | ND         |              | 1   |

|     |            |                | Run            |         |            |          | QC       |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/09/23 08:03 | 05/09/23 17:37 | RMK     | GC-A1      | 1        | B165690  | No Prep     |



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

#### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2308505               | 5-08 Client Sample | e Name: | AA-0.75N     | AA-0.75MI-20230427, 4/27/2023 1:40:00PM, Client |               |            |              |                 |  |
|--------------------------------------|--------------------|---------|--------------|-------------------------------------------------|---------------|------------|--------------|-----------------|--|
| Constituent                          | Result             | Units   | PQL          | MDL                                             | Method        | MB<br>Bias | Lab<br>Quals |                 |  |
| Constituent<br>Acetone               | Result14           | ug/m3   | 10           | 0.075                                           | EPA-TO-15-SIM | Bias<br>ND | Quals<br>A01 | <u>DCN</u><br>1 |  |
| Benzene                              | 0.84               | ug/m3   | 0.050        | 0.0032                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| Benzyl chloride                      | ND                 | ug/m3   | 0.50         | 0.0052                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| Carbon tetrachloride                 | ND                 | ug/m3   | 0.20         | 0.0063                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| Chlorobenzene                        | ND                 | ug/m3   | 0.10         | 0.0079                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| Chloroform                           | ND                 | ug/m3   | 0.050        | 0.0058                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| 1,2-Dibromoethane                    | ND                 | ug/m3   | 0.20         | 0.014                                           | EPA-TO-15-SIM | ND         |              | 2               |  |
| 1,2-Dichlorobenzene                  | ND                 | ug/m3   | 0.20         | 0.011                                           | EPA-TO-15-SIM | ND         |              | 2               |  |
| I,3-Dichlorobenzene                  | ND                 | ug/m3   | 0.20         | 0.013                                           | EPA-TO-15-SIM | ND         |              | 2               |  |
| I,4-Dichlorobenzene                  | ND                 | ug/m3   | 0.20         | 0.016                                           | EPA-TO-15-SIM | ND         |              | 2               |  |
| Dichlorodifluoromethane              | 2.8                | ug/m3   | 0.50         | 0.052                                           | EPA-TO-15-SIM | ND         | A01          | 1               |  |
| I,1-Dichloroethane                   | ND                 | ug/m3   | 0.050        | 0.0041                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| I,2-Dichloroethane                   | ND                 | ug/m3   | 0.10         | 0.0046                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| I,1-Dichloroethene                   | ND                 | ug/m3   | 0.050        | 0.0078                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| cis-1,2-Dichloroethene               | ND                 | ug/m3   | 0.050        | 0.0044                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| rans-1,2-Dichloroethene              | ND                 | ug/m3   | 0.050        | 0.0075                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| rans-1,3-Dichloropropene             | ND                 | ug/m3   | 0.050        | 0.013                                           | EPA-TO-15-SIM | ND         |              | 2               |  |
| 1,1-Difluoroethane                   | 0.96               | ug/m3   | 5.0          | 0.0027                                          | EPA-TO-15-SIM | ND         | J            | 2               |  |
| Ethylbenzene                         | 0.45               | ug/m3   | 0.050        | 0.017                                           | EPA-TO-15-SIM | ND         |              | 2               |  |
| Methylene chloride                   | ND                 | ug/m3   | 0.20         | 0.0077                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| Tetrachloroethene                    | ND                 | ug/m3   | 0.10         | 0.011                                           | EPA-TO-15-SIM | ND         |              | 2               |  |
| Foluene                              | 2.2                | ug/m3   | 1.0          | 0.062                                           | EPA-TO-15-SIM | ND         | A01          | 1               |  |
| 1,1,1-Trichloroethane                | ND                 | ug/m3   | 0.10         | 0.0055                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| 1,1,2-Trichloroethane                | ND                 | ug/m3   | 0.10         | 0.0055                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| Trichloroethene                      | ND                 | ug/m3   | 0.10         | 0.0095                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| Trichlorofluoromethane               | 1.4                | ug/m3   | 0.050        | 0.0057                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| I,1,2-Trichloro-1,2,2-trifluoroethan | e 0.60             | ug/m3   | 0.10         | 0.0078                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| /inyl chloride                       | ND                 | ug/m3   | 0.020        | 0.0046                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| o- & m-Xylenes                       | 1.6                | ug/m3   | 0.050        | 0.0082                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| o-Xylene                             | 0.57               | ug/m3   | 0.050        | 0.0044                                          | EPA-TO-15-SIM | ND         |              | 2               |  |
| Total Xylenes                        | 2.1                | ug/m3   | 0.10         | 0.013                                           | EPA-TO-15-SIM | ND         |              | 2               |  |
| 4-Bromofluorobenzene (Surrogate)     | 86.3               | %       | 50 - 150 (LC | L - UCL)                                        | EPA-TO-15-SIM |            |              | 1               |  |
| 4-Bromofluorobenzene (Surrogate)     | 109                | %       | 50 - 150 (LC | L - UCL)                                        | EPA-TO-15-SIM |            |              | 2               |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

t ID: 1001424701 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample II | L Sample ID: 2308505-08 Client Sample Name: |                |                | AA-0.75MI-20230427, 4/27/2023 1:40:00PM, Client |            |          |          |           |  |
|---------------|---------------------------------------------|----------------|----------------|-------------------------------------------------|------------|----------|----------|-----------|--|
|               |                                             |                | Run            |                                                 |            |          | QC       |           |  |
| DCN           | Method                                      | Prep Date      | Date/Time      | Analyst                                         | Instrument | Dilution | Batch ID |           |  |
| 1             | EPA-TO-15-SIM                               | 05/05/23 12:29 | 05/07/23 06:53 | BEP                                             | MS-A1      | 10       | B165569  | EPA TO-15 |  |
| 2             | EPA-TO-15-SIM                               | 05/05/23 12:29 | 05/06/23 23:50 | BEP                                             | MS-A1      | 1        | B165569  | EPA TO-15 |  |



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308505-08 | Client Sampl | e Name: | AA-0.75M | 1-20230427 | 7, 4/27/2023 | 1:40:00PM, Client |              |     |
|----------------|------------|--------------|---------|----------|------------|--------------|-------------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL        | Method       | MB<br>Bias        | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 4.2          | ppmv    | 2.0      | 1.8        | ASTM-D1946   | ND                |              | 1   |

|     |            |                | Run            |         |            | QC       |          |             |  |  |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|--|--|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |  |  |
| 1   | ASTM-D1946 | 05/09/23 08:03 | 05/09/23 17:58 | RMK     | GC-A1      | 1        | B165690  | No Prep     |  |  |



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

#### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 230              | 08505-09 <b>C</b> | lient Sampl | le Name: | AA-PW1-20230427, 4/27/2023 1:35:00PM, Client |          |               |            |              |     |
|---------------------------------|-------------------|-------------|----------|----------------------------------------------|----------|---------------|------------|--------------|-----|
| Constituent                     | ·                 | Result      | Units    | PQL                                          | MDL      | Method        | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                         |                   | 23          | ug/m3    | 13                                           | 0.098    | EPA-TO-15-SIM | ND         | A01          | 1   |
| Benzene                         |                   | 1.8         | ug/m3    | 0.21                                         | 0.013    | EPA-TO-15-SIM | ND         | A01          | 2   |
| Benzyl chloride                 |                   | ND          | ug/m3    | 2.1                                          | 0.021    | EPA-TO-15-SIM | ND         | A01          | 2   |
| Carbon tetrachloride            |                   | ND          | ug/m3    | 0.82                                         | 0.026    | EPA-TO-15-SIM | ND         | A01          | 2   |
| Chlorobenzene                   |                   | ND          | ug/m3    | 0.41                                         | 0.033    | EPA-TO-15-SIM | ND         | A01          | 2   |
| Chloroform                      |                   | ND          | ug/m3    | 0.21                                         | 0.024    | EPA-TO-15-SIM | ND         | A01          | 2   |
| 1,2-Dibromoethane               |                   | ND          | ug/m3    | 0.82                                         | 0.058    | EPA-TO-15-SIM | ND         | A01          | 2   |
| 1,2-Dichlorobenzene             |                   | ND          | ug/m3    | 0.82                                         | 0.045    | EPA-TO-15-SIM | ND         | A01          | 2   |
| 1,3-Dichlorobenzene             |                   | ND          | ug/m3    | 0.82                                         | 0.054    | EPA-TO-15-SIM | ND         | A01          | 2   |
| 1,4-Dichlorobenzene             |                   | ND          | ug/m3    | 0.82                                         | 0.066    | EPA-TO-15-SIM | ND         | A01          | 2   |
| Dichlorodifluoromethane         |                   | 4.4         | ug/m3    | 0.21                                         | 0.021    | EPA-TO-15-SIM | ND         | A01          | 2   |
| 1,1-Dichloroethane              |                   | ND          | ug/m3    | 0.21                                         | 0.017    | EPA-TO-15-SIM | ND         | A01          | 2   |
| 1,2-Dichloroethane              |                   | ND          | ug/m3    | 0.41                                         | 0.019    | EPA-TO-15-SIM | ND         | A01          | 2   |
| I,1-Dichloroethene              |                   | ND          | ug/m3    | 0.21                                         | 0.032    | EPA-TO-15-SIM | ND         | A01          | 2   |
| cis-1,2-Dichloroethene          |                   | ND          | ug/m3    | 0.21                                         | 0.018    | EPA-TO-15-SIM | ND         | A01          | 2   |
| rans-1,2-Dichloroethene         |                   | ND          | ug/m3    | 0.21                                         | 0.031    | EPA-TO-15-SIM | ND         | A01          | 2   |
| rans-1,3-Dichloropropene        |                   | ND          | ug/m3    | 0.21                                         | 0.054    | EPA-TO-15-SIM | ND         | A01          | 2   |
| I,1-Difluoroethane              |                   | 2.1         | ug/m3    | 21                                           | 0.011    | EPA-TO-15-SIM | ND         | J,A01        | 2   |
| Ethylbenzene                    |                   | 1.0         | ug/m3    | 0.21                                         | 0.070    | EPA-TO-15-SIM | ND         | A01          | 2   |
| Methylene chloride              |                   | ND          | ug/m3    | 0.82                                         | 0.032    | EPA-TO-15-SIM | ND         | A01          | 2   |
| Tetrachloroethene               |                   | ND          | ug/m3    | 0.41                                         | 0.045    | EPA-TO-15-SIM | ND         | A01          | 2   |
| Foluene                         |                   | 6.0         | ug/m3    | 0.41                                         | 0.026    | EPA-TO-15-SIM | ND         | A01          | 2   |
| I,1,1-Trichloroethane           |                   | ND          | ug/m3    | 0.41                                         | 0.023    | EPA-TO-15-SIM | ND         | A01          | 2   |
| 1,1,2-Trichloroethane           |                   | ND          | ug/m3    | 0.41                                         | 0.023    | EPA-TO-15-SIM | ND         | A01          | 2   |
| Trichloroethene                 |                   | ND          | ug/m3    | 0.41                                         | 0.039    | EPA-TO-15-SIM | ND         | A01          | 2   |
| Trichlorofluoromethane          |                   | 2.4         | ug/m3    | 0.21                                         | 0.023    | EPA-TO-15-SIM | ND         | A01          | 2   |
| I,1,2-Trichloro-1,2,2-trifluoro | ethane            | 1.0         | ug/m3    | 0.41                                         | 0.032    | EPA-TO-15-SIM | ND         | A01          | 2   |
| /inyl chloride                  |                   | ND          | ug/m3    | 0.082                                        | 0.019    | EPA-TO-15-SIM | ND         | A01          | 2   |
| o- & m-Xylenes                  |                   | 3.3         | ug/m3    | 0.21                                         | 0.034    | EPA-TO-15-SIM | ND         | A01          | 2   |
| o-Xylene                        |                   | 1.3         | ug/m3    | 0.21                                         | 0.018    | EPA-TO-15-SIM | ND         | A01          | 2   |
| Fotal Xylenes                   |                   | 4.6         | ug/m3    | 0.41                                         | 0.054    | EPA-TO-15-SIM | ND         | A01          | 2   |
| I-Bromofluorobenzene (Surro     | gate)             | 88.5        | %        | 50 - 150 (LC                                 | L - UCL) | EPA-TO-15-SIM |            |              | 1   |
| 4-Bromofluorobenzene (Surro     | qate)             | 97.2        | %        | 50 - 150 (LC                                 | L - UCL) | EPA-TO-15-SIM |            |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | BCL Sample ID: 2308505-09 Client Sample Name: |                |                | AA-PW1-20230427, 4/27/2023 1:35:00PM, Client |            |          |          |           |  |
|---------------|-----------------------------------------------|----------------|----------------|----------------------------------------------|------------|----------|----------|-----------|--|
|               |                                               | Ē              | Run            |                                              |            |          | QC       |           |  |
| DCN           | Method                                        | Prep Date      | Date/Time      | Analyst                                      | Instrument | Dilution | Batch ID |           |  |
| 1             | EPA-TO-15-SIM                                 | 05/05/23 12:29 | 05/07/23 07:25 | BEP                                          | MS-A1      | 13       | B165569  | EPA TO-15 |  |
| 2             | EPA-TO-15-SIM                                 | 05/05/23 12:29 | 05/08/23 22:54 | BEP                                          | MS-A1      | 4.120    | B165619  | EPA TO-15 |  |



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308505-09 | Client Sampl | e Name: | AA-PW1-2 | 20230427, | 4/27/2023 1:35 | :00PM, Client |              |     |
|----------------|------------|--------------|---------|----------|-----------|----------------|---------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL       | Method         | MB<br>Bias    | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 6.4          | ppmv    | 2.0      | 1.8       | ASTM-D1946     | ND            |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/09/23 08:03 | 05/09/23 18:18 | RMK     | GC-A1      | 1        | B165690  | No Prep     |



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2308               | S505-10 Client Samp | le Name: | AA-PW2-20230427, 4/27/2023 12:08:00PM, Client |          |               |            |              |     |
|-----------------------------------|---------------------|----------|-----------------------------------------------|----------|---------------|------------|--------------|-----|
| Constituent                       | Result              | Units    | PQL                                           | MDL      | Method        | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                           | 12                  | ug/m3    | 10                                            | 0.075    | EPA-TO-15-SIM | ND         | A01          | 1   |
| Benzene                           | 0.91                | ug/m3    | 0.050                                         | 0.0032   | EPA-TO-15-SIM | ND         |              | 2   |
| Benzyl chloride                   | ND                  | ug/m3    | 0.50                                          | 0.0052   | EPA-TO-15-SIM | ND         |              | 2   |
| Carbon tetrachloride              | ND                  | ug/m3    | 0.20                                          | 0.0063   | EPA-TO-15-SIM | ND         |              | 2   |
| Chlorobenzene                     | ND                  | ug/m3    | 0.10                                          | 0.0079   | EPA-TO-15-SIM | ND         |              | 2   |
| Chloroform                        | ND                  | ug/m3    | 0.050                                         | 0.0058   | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dibromoethane                 | ND                  | ug/m3    | 0.20                                          | 0.014    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dichlorobenzene               | ND                  | ug/m3    | 0.20                                          | 0.011    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,3-Dichlorobenzene               | ND                  | ug/m3    | 0.20                                          | 0.013    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,4-Dichlorobenzene               | ND                  | ug/m3    | 0.20                                          | 0.016    | EPA-TO-15-SIM | ND         |              | 2   |
| Dichlorodifluoromethane           | 2.7                 | ug/m3    | 0.50                                          | 0.052    | EPA-TO-15-SIM | ND         | A01          | 1   |
| 1,1-Dichloroethane                | ND                  | ug/m3    | 0.050                                         | 0.0041   | EPA-TO-15-SIM | ND         |              | 2   |
| 1,2-Dichloroethane                | ND                  | ug/m3    | 0.10                                          | 0.0046   | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Dichloroethene                | ND                  | ug/m3    | 0.050                                         | 0.0078   | EPA-TO-15-SIM | ND         |              | 2   |
| cis-1,2-Dichloroethene            | ND                  | ug/m3    | 0.050                                         | 0.0044   | EPA-TO-15-SIM | ND         |              | 2   |
| rans-1,2-Dichloroethene           | ND                  | ug/m3    | 0.050                                         | 0.0075   | EPA-TO-15-SIM | ND         |              | 2   |
| trans-1,3-Dichloropropene         | ND                  | ug/m3    | 0.050                                         | 0.013    | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1-Difluoroethane                | 0.86                | ug/m3    | 5.0                                           | 0.0027   | EPA-TO-15-SIM | ND         | J            | 2   |
| Ethylbenzene                      | 0.47                | ug/m3    | 0.050                                         | 0.017    | EPA-TO-15-SIM | ND         |              | 2   |
| Methylene chloride                | ND                  | ug/m3    | 0.20                                          | 0.0077   | EPA-TO-15-SIM | ND         |              | 2   |
| Tetrachloroethene                 | ND                  | ug/m3    | 0.10                                          | 0.011    | EPA-TO-15-SIM | ND         |              | 2   |
| Toluene                           | 2.4                 | ug/m3    | 1.0                                           | 0.062    | EPA-TO-15-SIM | ND         | A01          | 1   |
| 1,1,1-Trichloroethane             | ND                  | ug/m3    | 0.10                                          | 0.0055   | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1,2-Trichloroethane             | ND                  | ug/m3    | 0.10                                          | 0.0055   | EPA-TO-15-SIM | ND         |              | 2   |
| Trichloroethene                   | ND                  | ug/m3    | 0.10                                          | 0.0095   | EPA-TO-15-SIM | ND         |              | 2   |
| Trichlorofluoromethane            | 1.3                 | ug/m3    | 0.050                                         | 0.0057   | EPA-TO-15-SIM | ND         |              | 2   |
| 1,1,2-Trichloro-1,2,2-trifluoroet | hane 0.57           | ug/m3    | 0.10                                          | 0.0078   | EPA-TO-15-SIM | ND         |              | 2   |
| /inyl chloride                    | ND                  | ug/m3    | 0.020                                         | 0.0046   | EPA-TO-15-SIM | ND         |              | 2   |
| o- & m-Xylenes                    | 1.7                 | ug/m3    | 0.050                                         | 0.0082   | EPA-TO-15-SIM | ND         |              | 2   |
| o-Xylene                          | 0.60                | ug/m3    | 0.050                                         | 0.0044   | EPA-TO-15-SIM | ND         |              | 2   |
| Total Xylenes                     | 2.3                 | ug/m3    | 0.10                                          | 0.013    | EPA-TO-15-SIM | ND         |              | 2   |
| 4-Bromofluorobenzene (Surroga     | ate) 86.9           | %        | 50 - 150 (LC                                  | L - UCL) | EPA-TO-15-SIM |            |              | 1   |
| 4-Bromofluorobenzene (Surroga     | ate) 107            | %        | 50 - 150 (LC                                  | L - UCL) | EPA-TO-15-SIM |            |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample II | BCL Sample ID: 2308505-10 Client Sample Name: A |                |                | AA-PW2-2023 | 30427, 4/27/2023 | 3 12:08:00PI | M, Client |           |
|---------------|-------------------------------------------------|----------------|----------------|-------------|------------------|--------------|-----------|-----------|
|               |                                                 | -              | Run            |             |                  |              | QC        |           |
| DCN           | Method                                          | Prep Date      | Date/Time      | Analyst     | Instrument       | Dilution     | Batch ID  |           |
| 1             | EPA-TO-15-SIM                                   | 05/05/23 12:29 | 05/07/23 07:56 | BEP         | MS-A1            | 10           | B165569   | EPA TO-15 |
| 2             | EPA-TO-15-SIM                                   | 05/05/23 12:29 | 05/07/23 01:06 | BEP         | MS-A1            | 1            | B165569   | EPA TO-15 |



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308505-10 | Client Sampl | e Name: | AA-PW2-2 | 20230427, | 4/27/2023 12:08 | :00PM, Client |              |     |
|----------------|------------|--------------|---------|----------|-----------|-----------------|---------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL       | Method          | MB<br>Bias    | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 3.1          | ppmv    | 2.0      | 1.8       | ASTM-D1946      | ND            |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/09/23 08:03 | 05/09/23 19:18 | RMK     | GC-A1      | 1        | B165690  | No Prep     |



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2308505-               | 11 Client Sample | Client Sample Name: |              |          | AA-PW3-20230427, 4/27/2023 10:20:00AM, Client |            |              |     |  |
|---------------------------------------|------------------|---------------------|--------------|----------|-----------------------------------------------|------------|--------------|-----|--|
| Constituent                           | Result           | Units               | PQL          | MDL      | Method                                        | MB<br>Bias | Lab<br>Quals | DCN |  |
| Acetone                               | 10               | ug/m3               | 10           | 0.075    | EPA-TO-15-SIM                                 | ND         | A01          | 1   |  |
| Benzene                               | 0.82             | ug/m3               | 0.050        | 0.0032   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| Benzyl chloride                       | ND               | ug/m3               | 0.50         | 0.0052   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| Carbon tetrachloride                  | ND               | ug/m3               | 0.20         | 0.0063   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| Chlorobenzene                         | ND               | ug/m3               | 0.10         | 0.0079   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| Chloroform                            | ND               | ug/m3               | 0.050        | 0.0058   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| 1,2-Dibromoethane                     | ND               | ug/m3               | 0.20         | 0.014    | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| 1,2-Dichlorobenzene                   | ND               | ug/m3               | 0.20         | 0.011    | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| 1,3-Dichlorobenzene                   | ND               | ug/m3               | 0.20         | 0.013    | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| 1,4-Dichlorobenzene                   | ND               | ug/m3               | 0.20         | 0.016    | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| Dichlorodifluoromethane               | 2.6              | ug/m3               | 0.50         | 0.052    | EPA-TO-15-SIM                                 | ND         | A01          | 1   |  |
| 1,1-Dichloroethane                    | ND               | ug/m3               | 0.050        | 0.0041   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| 1,2-Dichloroethane                    | ND               | ug/m3               | 0.10         | 0.0046   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| I,1-Dichloroethene                    | ND               | ug/m3               | 0.050        | 0.0078   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| cis-1,2-Dichloroethene                | ND               | ug/m3               | 0.050        | 0.0044   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| rans-1,2-Dichloroethene               | ND               | ug/m3               | 0.050        | 0.0075   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| rans-1,3-Dichloropropene              | ND               | ug/m3               | 0.050        | 0.013    | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| 1,1-Difluoroethane                    | 0.76             | ug/m3               | 5.0          | 0.0027   | EPA-TO-15-SIM                                 | ND         | J            | 2   |  |
| Ethylbenzene                          | 0.42             | ug/m3               | 0.050        | 0.017    | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| Methylene chloride                    | ND               | ug/m3               | 0.20         | 0.0077   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| Tetrachloroethene                     | ND               | ug/m3               | 0.10         | 0.011    | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| Foluene                               | 2.1              | ug/m3               | 1.0          | 0.062    | EPA-TO-15-SIM                                 | ND         | A01          | 1   |  |
| 1,1,1-Trichloroethane                 | ND               | ug/m3               | 0.10         | 0.0055   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| 1,1,2-Trichloroethane                 | ND               | ug/m3               | 0.10         | 0.0055   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| Frichloroethene                       | ND               | ug/m3               | 0.10         | 0.0095   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| Trichlorofluoromethane                | 1.3              | ug/m3               | 0.050        | 0.0057   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.58             | ug/m3               | 0.10         | 0.0078   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| /inyl chloride                        | ND               | ug/m3               | 0.020        | 0.0046   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| o- & m-Xylenes                        | 1.5              | ug/m3               | 0.050        | 0.0082   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| o-Xylene                              | 0.54             | ug/m3               | 0.050        | 0.0044   | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| Fotal Xylenes                         | 2.1              | ug/m3               | 0.10         | 0.013    | EPA-TO-15-SIM                                 | ND         |              | 2   |  |
| 4-Bromofluorobenzene (Surrogate)      | 85.8             | %                   | 50 - 150 (LC | L - UCL) | EPA-TO-15-SIM                                 |            |              | 1   |  |
| 4-Bromofluorobenzene (Surrogate)      | 103              | %                   | 50 - 150 (LC | L - UCL) | EPA-TO-15-SIM                                 |            |              | 2   |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11424701 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001424701



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample II | <b>D:</b> 2308505-11 | Client San     | nple Name:     | AA-PW3-2023 | 30427, 4/27/2023 |          |          |           |
|---------------|----------------------|----------------|----------------|-------------|------------------|----------|----------|-----------|
|               |                      |                | Run            |             |                  |          | QC       |           |
| DCN           | Method               | Prep Date      | Date/Time      | Analyst     | Instrument       | Dilution | Batch ID |           |
| 1             | EPA-TO-15-SIM        | 05/05/23 12:29 | 05/07/23 08:28 | BEP         | MS-A1            | 10       | B165569  | EPA TO-15 |
| 2             | EPA-TO-15-SIM        | 05/05/23 12:29 | 05/07/23 01:44 | BEP         | MS-A1            | 1        | B165569  | EPA TO-15 |



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2308505-11 | Client Sampl | e Name: | AA-PW3-2 | 20230427, | 4/27/2023 10:20 | 00AM, Client |              |     |
|----------------|------------|--------------|---------|----------|-----------|-----------------|--------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL       | Method          | MB<br>Bias   | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 2.2          | ppmv    | 2.0      | 1.8       | ASTM-D1946      | ND           |              | 1   |

|     |            |                | Run            |         |            |          | QC       |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/09/23 08:03 | 05/09/23 19:38 | RMK     | GC-A1      | 1        | B165690  | No Prep     |



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Method Blank Analysis**

| Constituent                           | QC Sample ID | MB Result | Units | PQL     | MDL           | Lab Quals | Run # |
|---------------------------------------|--------------|-----------|-------|---------|---------------|-----------|-------|
| QC Batch ID: B165569                  |              |           |       |         |               |           |       |
| Acetone                               | B165569-BLK1 | ND        | ug/m3 | 1.0     | 0.0075        |           | 1     |
| Benzene                               | B165569-BLK1 | ND        | ug/m3 | 0.050   | 0.0032        |           | 1     |
| Benzyl chloride                       | B165569-BLK1 | ND        | ug/m3 | 0.50    | 0.0052        |           | 1     |
| Carbon tetrachloride                  | B165569-BLK1 | ND        | ug/m3 | 0.20    | 0.0063        |           | 1     |
| Chlorobenzene                         | B165569-BLK1 | ND        | ug/m3 | 0.10    | 0.0079        |           | 1     |
| Chloroform                            | B165569-BLK1 | ND        | ug/m3 | 0.050   | 0.0058        |           | 1     |
| 1,2-Dibromoethane                     | B165569-BLK1 | ND        | ug/m3 | 0.20    | 0.014         |           | 1     |
| 1,2-Dichlorobenzene                   | B165569-BLK1 | ND        | ug/m3 | 0.20    | 0.011         |           | 1     |
| 1,3-Dichlorobenzene                   | B165569-BLK1 | ND        | ug/m3 | 0.20    | 0.013         |           | 1     |
| 1,4-Dichlorobenzene                   | B165569-BLK1 | ND        | ug/m3 | 0.20    | 0.016         |           | 1     |
| Dichlorodifluoromethane               | B165569-BLK1 | ND        | ug/m3 | 0.050   | 0.0052        |           | 1     |
| 1,1-Dichloroethane                    | B165569-BLK1 | ND        | ug/m3 | 0.050   | 0.0041        |           | 1     |
| 1,2-Dichloroethane                    | B165569-BLK1 | ND        | ug/m3 | 0.10    | 0.0046        |           | 1     |
| 1,1-Dichloroethene                    | B165569-BLK1 | ND        | ug/m3 | 0.050   | 0.0078        |           | 1     |
| cis-1,2-Dichloroethene                | B165569-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 1     |
| trans-1,2-Dichloroethene              | B165569-BLK1 | ND        | ug/m3 | 0.050   | 0.0075        |           | 1     |
| trans-1,3-Dichloropropene             | B165569-BLK1 | ND        | ug/m3 | 0.050   | 0.013         |           | 1     |
| 1,1-Difluoroethane                    | B165569-BLK1 | ND        | ug/m3 | 5.0     | 0.0027        |           | 1     |
| Ethylbenzene                          | B165569-BLK1 | ND        | ug/m3 | 0.050   | 0.017         |           | 1     |
| Methylene chloride                    | B165569-BLK1 | ND        | ug/m3 | 0.20    | 0.0077        |           | 1     |
| Tetrachloroethene                     | B165569-BLK1 | ND        | ug/m3 | 0.10    | 0.011         |           | 1     |
| Toluene                               | B165569-BLK1 | ND        | ug/m3 | 0.10    | 0.0062        |           | 1     |
| 1,1,1-Trichloroethane                 | B165569-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 1     |
| 1,1,2-Trichloroethane                 | B165569-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 1     |
| Trichloroethene                       | B165569-BLK1 | ND        | ug/m3 | 0.10    | 0.0095        |           | 1     |
| Trichlorofluoromethane                | B165569-BLK1 | ND        | ug/m3 | 0.050   | 0.0057        |           | 1     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | B165569-BLK1 | ND        | ug/m3 | 0.10    | 0.0078        |           | 1     |
| Vinyl chloride                        | B165569-BLK1 | ND        | ug/m3 | 0.020   | 0.0046        |           | 1     |
| p- & m-Xylenes                        | B165569-BLK1 | ND        | ug/m3 | 0.050   | 0.0082        |           | 1     |
| o-Xylene                              | B165569-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 1     |
| Total Xylenes                         | B165569-BLK1 | ND        | ug/m3 | 0.10    | 0.013         |           | 1     |
| 4-Bromofluorobenzene (Surrogate)      | B165569-BLK1 | 77.6      | %     | 50 - 15 | 0 (LCL - UCL) |           | 1     |

QC Batch ID: B165619

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Method Blank Analysis**

| Constituent                           | QC Sample ID | MB Result | Units | PQL     | MDL           | Lab Quals | Run # |
|---------------------------------------|--------------|-----------|-------|---------|---------------|-----------|-------|
| QC Batch ID: B165619                  |              |           |       |         |               |           |       |
| Benzene                               | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0032        |           | 2     |
| Benzyl chloride                       | B165619-BLK1 | ND        | ug/m3 | 0.50    | 0.0052        |           | 2     |
| Carbon tetrachloride                  | B165619-BLK1 | ND        | ug/m3 | 0.20    | 0.0063        |           | 2     |
| Chlorobenzene                         | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.0079        |           | 2     |
| Chloroform                            | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0058        |           | 2     |
| 1,2-Dibromoethane                     | B165619-BLK1 | ND        | ug/m3 | 0.20    | 0.014         |           | 2     |
| 1,2-Dichlorobenzene                   | B165619-BLK1 | ND        | ug/m3 | 0.20    | 0.011         |           | 2     |
| 1,3-Dichlorobenzene                   | B165619-BLK1 | ND        | ug/m3 | 0.20    | 0.013         |           | 2     |
| 1,4-Dichlorobenzene                   | B165619-BLK1 | ND        | ug/m3 | 0.20    | 0.016         |           | 2     |
| Dichlorodifluoromethane               | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0052        |           | 2     |
| 1,1-Dichloroethane                    | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0041        |           | 2     |
| 1,2-Dichloroethane                    | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.0046        |           | 2     |
| 1,1-Dichloroethene                    | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0078        |           | 2     |
| cis-1,2-Dichloroethene                | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 2     |
| trans-1,2-Dichloroethene              | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0075        |           | 2     |
| trans-1,3-Dichloropropene             | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.013         |           | 2     |
| 1,1-Difluoroethane                    | B165619-BLK1 | ND        | ug/m3 | 5.0     | 0.0027        |           | 2     |
| Ethylbenzene                          | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.017         |           | 2     |
| Methylene chloride                    | B165619-BLK1 | ND        | ug/m3 | 0.20    | 0.0077        |           | 2     |
| Tetrachloroethene                     | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.011         |           | 2     |
| Toluene                               | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.0062        |           | 2     |
| 1,1,1-Trichloroethane                 | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 2     |
| 1,1,2-Trichloroethane                 | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 2     |
| Trichloroethene                       | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.0095        |           | 2     |
| Trichlorofluoromethane                | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0057        |           | 2     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.0078        |           | 2     |
| Vinyl chloride                        | B165619-BLK1 | ND        | ug/m3 | 0.020   | 0.0046        |           | 2     |
| p- & m-Xylenes                        | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0082        |           | 2     |
| o-Xylene                              | B165619-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 2     |
| Total Xylenes                         | B165619-BLK1 | ND        | ug/m3 | 0.10    | 0.013         |           | 2     |
| 4-Bromofluorobenzene (Surrogate)      | B165619-BLK1 | 80.8      | %     | 50 - 15 | 0 (LCL - UCL) |           | 2     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 001424701 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Method Blank Analysis**

|       |              |         |               |           | Run            |         |            |          |  |
|-------|--------------|---------|---------------|-----------|----------------|---------|------------|----------|--|
| Run # | QC Sample ID | QC Type |               | Prep Date | Date Time      | Analyst | Instrument | Dilution |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
| 1     | B165569-BLK1 | PB      | EPA-TO-15-SIM | 05/05/23  | 05/06/23 06:21 | BEP     | MS-A1      | 1        |  |
|       |              |         |               |           |                |         |            |          |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Method Blank Analysis**

| Run #    | QC Sample ID | QC Type | Method        | Prep Date | Run<br>Date Time | Analyst | Instrument | Dilution |
|----------|--------------|---------|---------------|-----------|------------------|---------|------------|----------|
| 2 Rull # | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |
| 2        | B165619-BLK1 | PB      | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:57   | BEP     | MS-A1      | 1        |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

|                        |                             |             | •                  |                    |                |              |      |                      |       |       |        |
|------------------------|-----------------------------|-------------|--------------------|--------------------|----------------|--------------|------|----------------------|-------|-------|--------|
|                        |                             |             |                    |                    |                |              |      | Control I            | imits |       |        |
|                        |                             |             |                    | Spike              |                | Percent      |      | Percent              |       | Lab   |        |
| Constituent            | QC Sample ID                | Туре        | Result             | Level              | Units          | Recovery     | RPD  | Recovery             | RPD   | Quals | Run #  |
| QC Batch ID: B165569   |                             |             |                    |                    |                |              |      |                      |       |       |        |
| Benzene                | <br>B165569-BS1             | LCS         | 0.27989            | 0.31948            | ug/m3          | 87.6         |      | 70 - 130             |       |       | 1      |
|                        | B165569-BSD1                | LCSD        | 0.28299            | 0.31948            | ug/m3          | 88.6         | 1.1  | 70 - 130             | 30    |       | 2      |
| Benzyl chloride        | B165569-BS1                 | LCS         | 0.49934            | 0.51772            | ug/m3          | 96.4         |      | 70 - 130             |       | J     | 1      |
| Donzyrolliollad        | B165569-BSD1                | LCSD        | 0.49650            | 0.51772            | ug/m3          | 95.9         | 0.6  | 70 - 130             | 30    | J     | 2      |
| Carbon tetrachloride   | B165569-BS1                 | LCS         | 0.56792            | 0.62913            | ug/m3          | 90.3         |      | 70 - 130             |       |       | 1      |
| Carbon tetrachionde    | B165569-BSD1                | LCS         | 0.57522            | 0.62913            | ug/m3          | 91.4         | 1.3  | 70 - 130             | 30    |       | 2      |
| Chlorobenzene          | B165569-BS1                 |             | 0.42652            | 0.46036            |                | 92.6         |      | 70 - 130             |       |       | 1      |
| Chioroberizene         | B165569-BSD1                | LCS<br>LCSD | 0.42652            | 0.46036            | ug/m3<br>ug/m3 | 92.0<br>92.7 | 0.0  | 70 - 130<br>70 - 130 | 30    |       | 2      |
|                        |                             |             |                    |                    | -              |              | 0.0  |                      |       |       |        |
| Chloroform             | B165569-BS1<br>B165569-BSD1 | LCS         | 0.44778<br>0.44768 | 0.48825<br>0.48825 | ug/m3<br>ug/m3 | 91.7<br>91.7 | 0.0  | 70 - 130<br>70 - 130 | 30    |       | 1<br>2 |
|                        |                             | LCSD        |                    |                    | -              |              | 0.0  |                      | 50    |       |        |
| 1,2-Dibromoethane      | B165569-BS1                 | LCS         | 0.71579            | 0.76835            | ug/m3          | 93.2         | 0.4  | 70 - 130             | 00    |       | 1      |
|                        | B165569-BSD1                | LCSD        | 0.71664            | 0.76835            | ug/m3          | 93.3         | 0.1  | 70 - 130             | 30    |       | 2      |
| 1,2-Dichlorobenzene    | B165569-BS1                 | LCS         | 0.56991            | 0.60124            | ug/m3          | 94.8         |      | 70 - 130             |       |       | 1      |
|                        | B165569-BSD1                | LCSD        | 0.58188            | 0.60124            | ug/m3          | 96.8         | 2.1  | 70 - 130             | 30    |       | 2      |
| 1,3-Dichlorobenzene    | B165569-BS1                 | LCS         | 0.62967            | 0.60124            | ug/m3          | 105          |      | 70 - 130             |       |       | 1      |
|                        | B165569-BSD1                | LCSD        | 0.56684            | 0.60124            | ug/m3          | 94.3         | 10.5 | 70 - 130             | 30    |       | 2      |
| 1,4-Dichlorobenzene    | B165569-BS1                 | LCS         | 0.54839            | 0.60124            | ug/m3          | 91.2         |      | 70 - 130             |       |       | 1      |
|                        | B165569-BSD1                | LCSD        | 0.61116            | 0.60124            | ug/m3          | 102          | 10.8 | 70 - 130             | 30    |       | 2      |
| 1,1-Dichloroethane     | B165569-BS1                 | LCS         | 0.37115            | 0.40474            | ug/m3          | 91.7         |      | 70 - 130             |       |       | 1      |
|                        | B165569-BSD1                | LCSD        | 0.37094            | 0.40474            | ug/m3          | 91.6         | 0.1  | 70 - 130             | 30    |       | 2      |
| 1,2-Dichloroethane     | B165569-BS1                 | LCS         | 0.36593            | 0.40474            | ug/m3          | 90.4         |      | 70 - 130             |       |       | 1      |
|                        | B165569-BSD1                | LCSD        | 0.36471            | 0.40474            | ug/m3          | 90.1         | 0.3  | 70 - 130             | 30    |       | 2      |
| 1,1-Dichloroethene     | B165569-BS1                 | LCS         | 0.35689            | 0.39649            | ug/m3          | 90.0         |      | 70 - 130             |       |       | 1      |
|                        | B165569-BSD1                | LCSD        | 0.35696            | 0.39649            | ug/m3          | 90.0         | 0.0  | 70 - 130             | 30    |       | 2      |
| cis-1,2-Dichloroethene | B165569-BS1                 | LCS         | 0.35970            | 0.39649            | ug/m3          | 90.7         |      | 70 - 130             |       |       | 1      |
|                        | B165569-BSD1                | LCSD        | 0.35566            | 0.39649            | ug/m3          | 89.7         | 1.1  | 70 - 130             | 30    |       | 2      |
| Methylene chloride     | B165569-BS1                 | LCS         | 0.34696            | 0.34737            | ug/m3          | 99.9         |      | 70 - 130             |       |       | 1      |
|                        | B165569-BSD1                | LCSD        | 0.34515            | 0.34737            | ug/m3          | 99.4         | 0.5  | 70 - 130             | 30    |       | 2      |
| Tetrachloroethene      | B165569-BS1                 | LCS         | 0.62922            | 0.67825            | ug/m3          | 92.8         |      | 70 - 130             |       |       | 1      |
| Tetrachioroethene      | B165569-BSD1                | LCSD        | 0.62772            | 0.67825            | ug/m3          | 92.6         | 0.2  | 70 - 130<br>70 - 130 | 30    |       | 2      |
| Taluana                |                             |             |                    |                    |                |              | 0.2  |                      |       |       |        |
| Toluene                | B165569-BS1<br>B165569-BSD1 | LCS<br>LCSD | 0.34093<br>0.34240 | 0.37684<br>0.37684 | ug/m3<br>ug/m3 | 90.5<br>90.9 | 0.4  | 70 - 130<br>70 - 130 | 30    |       | 1<br>2 |
|                        |                             |             |                    |                    | -              |              | 0.4  |                      | 50    |       |        |
| 1,1,1-Trichloroethane  | B165569-BS1<br>B165569-BSD1 | LCS         | 0.49499            | 0.54562            | ug/m3          | 90.7<br>00.6 | 0.1  | 70 - 130<br>70 - 130 | 20    |       | 1      |
|                        |                             | LCSD        | 0.49455            | 0.54562            | ug/m3          | 90.6         | 0.1  |                      | 30    |       | 2      |
| 1,1,2-Trichloroethane  | B165569-BS1                 | LCS         | 0.50415            | 0.54562            | ug/m3          | 92.4         |      | 70 - 130             |       |       | 1      |
|                        | B165569-BSD1                | LCSD        | 0.50443            | 0.54562            | ug/m3          | 92.5         | 0.1  | 70 - 130             | 30    |       | 2      |

#### **Quality Control Report - Laboratory Control Sample**

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001424701



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

#### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

|                                  |                             |             |                    |                    |                |            |      | Control Limits       |     |       |        |
|----------------------------------|-----------------------------|-------------|--------------------|--------------------|----------------|------------|------|----------------------|-----|-------|--------|
|                                  |                             |             |                    | Spike              |                | Percent    |      | Percent              |     | Lab   |        |
| Constituent                      | QC Sample ID                | Туре        | Result             | Level              | Units          | Recovery   | RPD  | Recovery             | RPD | Quals | Run #  |
| QC Batch ID: B165569             |                             |             |                    |                    |                |            |      |                      |     |       |        |
| Trichloroethene                  | B165569-BS1                 | LCS         | 0.49798            | 0.53737            | ug/m3          | 92.7       |      | 70 - 130             |     |       | 1      |
|                                  | B165569-BSD1                | LCSD        | 0.49884            | 0.53737            | ug/m3          | 92.8       | 0.2  | 70 - 130             | 30  |       | 2      |
| Vinyl chloride                   | B165569-BS1                 | LCS         | 0.24186            | 0.25562            | ug/m3          | 94.6       |      | 70 - 130             |     |       | 1      |
|                                  | B165569-BSD1                | LCSD        | 0.24473            | 0.25562            | ug/m3          | 95.7       | 1.2  | 70 - 130             | 30  |       | 2      |
| p- & m-Xylenes                   | B165569-BS1                 | LCS         | 0.79140            | 0.86843            | ug/m3          | 91.1       |      | 70 - 130             |     |       | 1      |
|                                  | B165569-BSD1                | LCSD        | 0.79496            | 0.86843            | ug/m3          | 91.5       | 0.4  | 70 - 130             | 30  |       | 2      |
| o-Xylene                         | B165569-BS1                 | LCS         | 0.39309            | 0.43421            | ug/m3          | 90.5       |      | 70 - 130             |     |       | 1      |
|                                  | B165569-BSD1                | LCSD        | 0.39587            | 0.43421            | ug/m3          | 91.2       | 0.7  | 70 - 130             | 30  |       | 2      |
| Total Xylenes                    | B165569-BS1                 | LCS         | 1.1845             | 1.3026             | ug/m3          | 90.9       |      | 70 - 130             |     |       | 1      |
|                                  | B165569-BSD1                | LCSD        | 1.1908             | 1.3026             | ug/m3          | 91.4       | 0.5  | 70 - 130             | 30  |       | 2      |
| 4-Bromofluorobenzene (Surrogate) | B165569-BS1                 | LCS         | 3.59               | 3.58               | ug/m3          | 100        |      | 50 - 150             |     |       | 1      |
|                                  | B165569-BSD1                | LCSD        | 3.57               | 3.58               | ug/m3          | 99.7       | 0.7  | 50 - 150             |     |       | 2      |
| QC Batch ID: B165619             |                             |             |                    |                    |                |            |      |                      |     |       |        |
| Benzene                          | B165619-BS1                 | LCS         | 0.31114            | 0.31948            | ug/m3          | 97.4       |      | 70 - 130             |     |       | 3      |
|                                  | B165619-BSD1                | LCSD        | 0.30877            | 0.31948            | ug/m3          | 96.7       | 0.8  | 70 - 130             | 30  |       | 4      |
| Benzyl chloride                  | B165619-BS1                 | LCS         | 0.48122            | 0.51772            | ug/m3          | 93.0       |      | 70 - 130             |     | J     | 3      |
| ,                                | B165619-BSD1                | LCSD        | 0.53227            | 0.51772            | ug/m3          | 103        | 10.1 | 70 - 130             | 30  |       | 4      |
| Carbon tetrachloride             | B165619-BS1                 | LCS         | 0.68859            | 0.62913            | ug/m3          | 109        |      | 70 - 130             |     |       | 3      |
|                                  | B165619-BSD1                | LCSD        | 0.68305            | 0.62913            | ug/m3          | 109        | 0.8  | 70 - 130             | 30  |       | 4      |
| Chlorobenzene                    | B165619-BS1                 | LCS         | 0.46321            | 0.46036            | ug/m3          | 101        |      | 70 - 130             |     |       | 3      |
|                                  | B165619-BSD1                | LCSD        | 0.46758            | 0.46036            | ug/m3          | 102        | 0.9  | 70 - 130             | 30  |       | 4      |
| Chloroform                       | B165619-BS1                 | LCS         | 0.52673            | 0.48825            | ug/m3          | 108        |      | 70 - 130             |     |       | 3      |
|                                  | B165619-BSD1                | LCSD        | 0.51940            | 0.48825            | ug/m3          | 106        | 1.4  | 70 - 130             | 30  |       | 4      |
| 1,2-Dibromoethane                | B165619-BS1                 | LCS         | 0.81414            | 0.76835            | ug/m3          | 106        |      | 70 - 130             |     |       | 3      |
|                                  | B165619-BSD1                | LCSD        | 0.81714            | 0.76835            | ug/m3          | 106        | 0.4  | 70 - 130             | 30  |       | 4      |
| 1,2-Dichlorobenzene              | B165619-BS1                 | LCS         | 0.62174            | 0.60124            | ug/m3          | 103        |      | 70 - 130             |     |       | 3      |
| 1,2-Dichlorobenzene              | B165619-BSD1                | LCSD        | 0.65925            | 0.60124            | ug/m3          | 100        | 5.9  | 70 - 130<br>70 - 130 | 30  |       | 4      |
| 1,3-Dichlorobenzene              | B165619-BS1                 | LCS         | 0.53330            | 0.60124            | ug/m3          | 88.7       |      | 70 - 130             |     |       | 3      |
| 1,5-Dichlorobenzene              | B165619-BSD1                | LCSD        | 0.64296            | 0.60124            | ug/m3          | 107        | 18.6 | 70 - 130<br>70 - 130 | 30  |       | 4      |
| 1,4-Dichlorobenzene              | B165619-BS1                 | LCS         | 0.58693            | 0.60124            | ug/m3          | 97.6       |      | 70 - 130             |     |       | 3      |
| 1,4-Dichlorobenzene              | B165619-BSD1                | LCSD        | 0.59294            | 0.60124            | ug/m3          | 98.6       | 1.0  | 70 - 130<br>70 - 130 | 30  |       | 4      |
| 1.1 Dichloroothono               | B165619-BS1                 |             |                    | 0.40474            | -              |            |      | 70 - 130             |     |       | 3      |
| 1,1-Dichloroethane               | B165619-BSD1                | LCS<br>LCSD | 0.42255<br>0.42218 | 0.40474            | ug/m3<br>ug/m3 | 104<br>104 | 0.1  | 70 - 130<br>70 - 130 | 30  |       | 3<br>4 |
|                                  |                             |             |                    |                    | -              |            | v. i |                      |     |       |        |
| 1,2-Dichloroethane               | B165619-BS1<br>B165619-BSD1 | LCS<br>LCSD | 0.41203<br>0.40871 | 0.40474<br>0.40474 | ug/m3<br>ug/m3 | 102<br>101 | 0.8  | 70 - 130<br>70 - 130 | 30  |       | 3<br>4 |
|                                  |                             |             |                    |                    | -              |            | 0.0  |                      | 30  |       |        |
| 1,1-Dichloroethene               | B165619-BS1                 | LCS         | 0.40466            | 0.39649            | ug/m3          | 102        | 1.0  | 70 - 130<br>70 - 130 | 20  |       | 3<br>⊿ |
|                                  | B165619-BSD1                | LCSD        | 0.40062            | 0.39649            | ug/m3          | 101        | 1.0  | 70 - 130             | 30  |       | 4      |
|                                  |                             |             |                    |                    |                |            |      |                      |     |       |        |

#### **Quality Control Report - Laboratory Control Sample**

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001424701



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

#### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

|                                  |              |      |         |         |       |          |     | Control L | <u>imits</u> |       |       |
|----------------------------------|--------------|------|---------|---------|-------|----------|-----|-----------|--------------|-------|-------|
|                                  |              |      |         | Spike   |       | Percent  |     | Percent   |              | Lab   |       |
| Constituent                      | QC Sample ID | Туре | Result  | Level   | Units | Recovery | RPD | Recovery  | RPD          | Quals | Run # |
| QC Batch ID: B165619             |              |      |         |         |       |          |     |           |              |       |       |
| cis-1,2-Dichloroethene           | B165619-BS1  | LCS  | 0.39546 | 0.39649 | ug/m3 | 99.7     |     | 70 - 130  |              |       | 3     |
|                                  | B165619-BSD1 | LCSD | 0.39404 | 0.39649 | ug/m3 | 99.4     | 0.4 | 70 - 130  | 30           |       | 4     |
| Methylene chloride               | B165619-BS1  | LCS  | 0.40921 | 0.34737 | ug/m3 | 118      |     | 70 - 130  |              |       | 3     |
|                                  | B165619-BSD1 | LCSD | 0.40726 | 0.34737 | ug/m3 | 117      | 0.5 | 70 - 130  | 30           |       | 4     |
| Tetrachloroethene                | B165619-BS1  | LCS  | 0.73034 | 0.67825 | ug/m3 | 108      |     | 70 - 130  |              |       | 3     |
|                                  | B165619-BSD1 | LCSD | 0.73814 | 0.67825 | ug/m3 | 109      | 1.1 | 70 - 130  | 30           |       | 4     |
| Toluene                          | B165619-BS1  | LCS  | 0.36788 | 0.37684 | ug/m3 | 97.6     |     | 70 - 130  |              |       | 3     |
|                                  | B165619-BSD1 | LCSD | 0.36916 | 0.37684 | ug/m3 | 98.0     | 0.3 | 70 - 130  | 30           |       | 4     |
| 1,1,1-Trichloroethane            | B165619-BS1  | LCS  | 0.58349 | 0.54562 | ug/m3 | 107      |     | 70 - 130  |              |       | 3     |
|                                  | B165619-BSD1 | LCSD | 0.57928 | 0.54562 | ug/m3 | 106      | 0.7 | 70 - 130  | 30           |       | 4     |
| 1,1,2-Trichloroethane            | B165619-BS1  | LCS  | 0.58861 | 0.54562 | ug/m3 | 108      |     | 70 - 130  |              |       | 3     |
|                                  | B165619-BSD1 | LCSD | 0.58894 | 0.54562 | ug/m3 | 108      | 0.1 | 70 - 130  | 30           |       | 4     |
| Trichloroethene                  | B165619-BS1  | LCS  | 0.57230 | 0.53737 | ug/m3 | 106      |     | 70 - 130  |              |       | 3     |
|                                  | B165619-BSD1 | LCSD | 0.57564 | 0.53737 | ug/m3 | 107      | 0.6 | 70 - 130  | 30           |       | 4     |
| Vinyl chloride                   | B165619-BS1  | LCS  | 0.29521 | 0.25562 | ug/m3 | 115      |     | 70 - 130  |              |       | 3     |
|                                  | B165619-BSD1 | LCSD | 0.29135 | 0.25562 | ug/m3 | 114      | 1.3 | 70 - 130  | 30           |       | 4     |
| p- & m-Xylenes                   | B165619-BS1  | LCS  | 0.85410 | 0.86843 | ug/m3 | 98.4     |     | 70 - 130  |              |       | 3     |
|                                  | B165619-BSD1 | LCSD | 0.86204 | 0.86843 | ug/m3 | 99.3     | 0.9 | 70 - 130  | 30           |       | 4     |
| o-Xylene                         | B165619-BS1  | LCS  | 0.42892 | 0.43421 | ug/m3 | 98.8     |     | 70 - 130  |              |       | 3     |
|                                  | B165619-BSD1 | LCSD | 0.43795 | 0.43421 | ug/m3 | 101      | 2.1 | 70 - 130  | 30           |       | 4     |
| Total Xylenes                    | B165619-BS1  | LCS  | 1.2830  | 1.3026  | ug/m3 | 98.5     |     | 70 - 130  |              |       | 3     |
|                                  | B165619-BSD1 | LCSD | 1.3000  | 1.3026  | ug/m3 | 99.8     | 1.3 | 70 - 130  | 30           |       | 4     |
| 4-Bromofluorobenzene (Surrogate) | B165619-BS1  | LCS  | 3.42    | 3.58    | ug/m3 | 95.5     |     | 50 - 150  |              |       | 3     |
|                                  | B165619-BSD1 | LCSD | 3.47    | 3.58    | ug/m3 | 96.9     | 1.5 | 50 - 150  |              |       | 4     |

#### **Quality Control Report - Laboratory Control Sample**

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

#### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Laboratory Control Sample**

| Run # | QC Sample ID | QC Type | Method        | Prep Date | Run<br>Date Time | Analyst | Instrument | Dilution |
|-------|--------------|---------|---------------|-----------|------------------|---------|------------|----------|
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 1     | B165569-BS1  | LCS     | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:20   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results list di nuis report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 114242701 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com F

Report ID: 1001424701



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

#### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Laboratory Control Sample**

| Run # | QC Sample ID | QC Type | Method        | Prep Date | Run<br>Date Time | Analyst | Instrument | Dilution |
|-------|--------------|---------|---------------|-----------|------------------|---------|------------|----------|
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 2     | B165569-BSD1 | LCSD    | EPA-TO-15-SIM | 05/05/23  | 05/06/23 05:53   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting particular spectra in the exclusive use of the submitting particular spectra in the exclusive use of the submitting particular spectra in the exclusive spectra in the e

Report ID: 1001424701



Reported:05/15/202316:55Project:City TerraceProject Number:36908Project Manager:April McGuire

#### Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Laboratory Control Sample**

| Run # | QC Sample ID | QC Type | Method        | Prep Date | Run<br>Date Time | Analyst | Instrument | Dilution |
|-------|--------------|---------|---------------|-----------|------------------|---------|------------|----------|
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 3     | B165619-BS1  | LCS     | EPA-TO-15-SIM | 05/08/23  | 05/08/23 13:56   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |
| 4     | B165619-BSD1 | LCSD    | EPA-TO-15-SIM | 05/08/23  | 05/08/23 14:29   | BEP     | MS-A1      | 1        |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

#### Fixed Gases by GC/TCD (ASTM D1946)

#### **Quality Control Report - Method Blank Analysis**

|               |                |         | -            | -         |                  |         | -          |         |           |       |
|---------------|----------------|---------|--------------|-----------|------------------|---------|------------|---------|-----------|-------|
| Constituent   |                |         | QC Sample ID | MB Result | Units            | PQL     |            | MDL     | Lab Quals | Run # |
| QC Bat        | ch ID: B165689 |         |              |           |                  |         |            |         |           |       |
| Methane (CH4) |                |         | B165689-BLK1 | ND        | ppmv             | 2.0     |            | 1.8     |           | 1     |
| QC Bat        | ch ID: B165690 |         |              |           |                  |         |            |         |           |       |
| Methane (CH4  | 4)             |         | B165690-BLK1 | ND        | ppmv             | 2       | .0         | 1.8     |           | 2     |
| Run #         | QC Sample ID   | QC Type | Method       | Prep Date | Run<br>Date Time | Analyst | Instrument | Dilutio | n         |       |
| 1             | B165689-BLK1   | PB      | ASTM-D1946   | 05/09/23  | 05/09/23 11:39   | RMK     | GC-A1      | 1       |           |       |
| 2             | B165690-BLK1   | PB      | ASTM-D1946   | 05/09/23  | 05/09/23 16:57   | RMK     | GC-A1      | 1       |           |       |
|               |                |         |              |           |                  |         |            |         |           |       |



Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

#### **Quality Control Report - Laboratory Control Sample**

|                      |              |      |        |                |       | Control Limits      |     |                     |     |              |       |
|----------------------|--------------|------|--------|----------------|-------|---------------------|-----|---------------------|-----|--------------|-------|
| Constituent          | QC Sample ID | Туре | Result | Spike<br>Level | Units | Percent<br>Recovery | RPD | Percent<br>Recovery | RPD | Lab<br>Quals | Run # |
| QC Batch ID: B165689 |              |      |        |                |       |                     |     |                     |     |              |       |
| Methane (CH4)        | B165689-BS1  | LCS  | 20435  | 18000          | ppmv  | 114                 |     | 70 - 130            |     |              | 1     |
|                      | B165689-BSD1 | LCSD | 20514  | 18000          | ppmv  | 114                 | 0.4 | 70 - 130            | 30  |              | 2     |
| QC Batch ID: B165690 |              |      |        |                |       |                     |     |                     |     |              |       |
| Methane (CH4)        | B165690-BS1  | LCS  | 21482  | 18000          | ppmv  | 119                 |     | 70 - 130            |     |              | 3     |
|                      | B165690-BSD1 | LCSD | 21352  | 18000          | ppmv  | 119                 | 0.6 | 70 - 130            | 30  |              | 4     |

|       |              |         | Run        |           |                |         |            |          |  |  |
|-------|--------------|---------|------------|-----------|----------------|---------|------------|----------|--|--|
| Run # | QC Sample ID | QC Type | Method     | Prep Date | Date Time      | Analyst | Instrument | Dilution |  |  |
| 1     | B165689-BS1  | LCS     | ASTM-D1946 | 05/09/23  | 05/09/23 10:59 | RMK     | GC-A1      | 1        |  |  |
| 2     | B165689-BSD1 | LCSD    | ASTM-D1946 | 05/09/23  | 05/09/23 11:19 | RMK     | GC-A1      | 1        |  |  |
| 3     | B165690-BS1  | LCS     | ASTM-D1946 | 05/09/23  | 05/09/23 16:18 | RMK     | GC-A1      | 1        |  |  |
| 4     | B165690-BSD1 | LCSD    | ASTM-D1946 | 05/09/23  | 05/09/23 16:37 | RMK     | GC-A1      | 1        |  |  |

Page 52 of 53



#### Reported: 05/15/2023 16:55 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

#### **Notes And Definitions**

- MDL Method Detection Limit
- ND Analyte Not Detected
- PQL Practical Quantitation Limit
- A01 Detection and quantitation limits are raised due to sample dilution.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 112424701 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Date of Report: 05/17/2023

April McGuire

Roux Associates, Inc -Long Beach 5150 E. Pacific Coast Hwy, Suite 450 Long Beach, CA 90804

Client Project:36908BCL Project:City TerraceBCL Work Order:2309559Invoice ID:B476283

Enclosed are the results of analyses for samples received by the laboratory on 5/13/2023. If you have any questions concerning this report, please feel free to contact me.

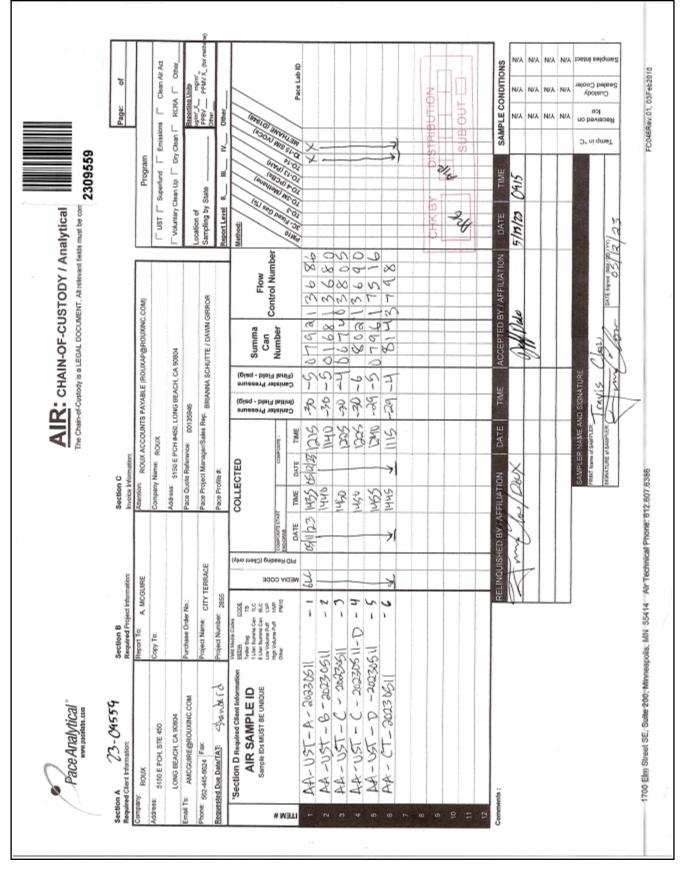
Sincerely,

Contact Person: Brianna Schutte Client Services Rep

A

Stuart Buttram Operations Manager

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101




#### **Table of Contents**

| Sample Information                                            |    |
|---------------------------------------------------------------|----|
| Chain of Custody and Cooler Receipt form                      | 3  |
| Laboratory / Client Sample Cross Reference                    | 5  |
| Sample Results                                                |    |
| 2309559-01 - AA-UST-A-20230511                                |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) | 6  |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2309559-02 - AA-UST-B-20230511                                |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) | 9  |
| Fixed Gases by GC/TCD (ASTM D1946)                            | 11 |
| 2309559-03 - AA-UST-C-20230511                                |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            | 14 |
| 2309559-04 - AA-UST-C-20230511-D                              |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            | 17 |
| 2309559-05 - AA-UST-D-20230511                                |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| 2309559-06 - AA-CT-20230511                                   |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| Quality Control Reports                                       |    |
| Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP) |    |
| Method Blank Analysis                                         |    |
| Laboratory Control Sample                                     |    |
| Fixed Gases by GC/TCD (ASTM D1946)                            |    |
| Method Blank Analysis                                         |    |
| Laboratory Control Sample                                     | 31 |
| Notes                                                         |    |
| Notes and Definitions                                         |    |



#### Chain of Custody and Cooler Receipt Form for 2309559 Page 1 of 2



The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



#### Chain of Custody and Cooler Receipt Form for 2309559 Page 2 of 2

| PACE ANALYTICAL ·                                                         | FORM Page Of          |                 |           |                                                                                                             |        |                |             |           |                                      |          |
|---------------------------------------------------------------------------|-----------------------|-----------------|-----------|-------------------------------------------------------------------------------------------------------------|--------|----------------|-------------|-----------|--------------------------------------|----------|
| Submission #: 23-09559                                                    |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| SHIPPING INFORM<br>Fed Ex L UPS GSO / GLS<br>Pace Lab Field Service Other | ATION<br>Ha           | ind Deliv       | ery 🗆     | SHIPPING CONTAINER     FREE LIQUID       Ice Chest □     None □     Box №       Other □ (Specify)     W / S |        |                |             |           |                                      |          |
| Refrigerant: Ice 🗆 Blue Ice 🗆                                             | None                  | V Ot            | her 🗆     | Commen                                                                                                      | ts:    |                |             |           |                                      |          |
| Intact? Yes D No D Int                                                    | Contain<br>act? Yes [ | ers 🗆<br>I No 🖸 | None      | S Comn                                                                                                      | nents: |                |             |           |                                      |          |
| All samples received? Yes No 🗆 All                                        | i samples             | container       | s Intact? | Yes No                                                                                                      |        | Descrip        | tion(s) mat | ch COC?   | Yes 🖌 No                             | 0        |
|                                                                           |                       |                 |           |                                                                                                             |        | er ID:<br>pnj/ |             |           | 10 <u>5/13/2</u><br>Init_ <u>)CN</u> |          |
| SAMPLE CONTAINERS                                                         | 1                     | 2               | 3         | 1 4                                                                                                         | SAMPLE | NUMBERS        | 7           | 1         |                                      | 1        |
| QT PE UNPRES                                                              |                       |                 | 1         |                                                                                                             |        |                | <u> </u>    | 8         | 9                                    | 10       |
| 402/802/1602 PE UNPRES                                                    |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| 2nz Cr <sup>46</sup>                                                      |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| OT INORGANIC CHEMICAL METALS                                              |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| INORGANIC CHEMICAL METALS 402 / 802 / 1602                                |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| PT CYANIDE                                                                |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| PT NITROGEN FORMS                                                         |                       |                 |           |                                                                                                             |        |                |             |           |                                      | <u> </u> |
| PT TOTAL SULFIDE                                                          |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| Roz. NITRATE / NITRITE                                                    |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| PT TOTAL ORGANIC CARBON                                                   |                       |                 |           |                                                                                                             |        |                |             |           |                                      | 1        |
| PT CHEMICAL OXYGEN DEMAND                                                 |                       |                 |           |                                                                                                             |        |                |             |           |                                      | <u> </u> |
| PIA PHENOLICS                                                             |                       |                 |           |                                                                                                             |        |                |             |           |                                      | <u> </u> |
| 0ml VOA VIAL TRAVEL BLANK                                                 |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| umi VOA VIAL                                                              |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| QT EPA 16648                                                              |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| TODOR                                                                     |                       |                 |           |                                                                                                             |        |                |             |           | -                                    |          |
| ADIOLOGICAL -                                                             |                       |                 |           |                                                                                                             |        |                |             | · · · · · |                                      |          |
| ACTERIOLOGICAL                                                            |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| 0 ml VOA VIAL- 504                                                        |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| )T EPA 508/608.3/3081A                                                    |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| YT EPA 515.1/8151A                                                        |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| T EPA 515,1                                                               |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| T EPA 325.1<br>T EPA 525.2 TRAVEL BLANK                                   |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| 0ml EPA 547                                                               |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| Oml EPA 531.[                                                             |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| oz EPA 548.I                                                              |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
|                                                                           |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| VT EPA 549.2                                                              |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| T EPA 8015M                                                               |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| or / 16oz / 32oz AMBER                                                    |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| nz / 160z / 320z JAR                                                      |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| OIL SLEEVE                                                                |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| CB VIAL                                                                   |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| LASTIC BAG                                                                |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| EDLAR BAG                                                                 |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| ERROUS IRON                                                               |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| NCORE                                                                     |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
|                                                                           |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| MART KIT                                                                  |                       |                 |           |                                                                                                             |        |                |             |           |                                      |          |
| UMMA CANISTER                                                             | A                     | A               | A         | A                                                                                                           | A      | A              |             |           |                                      |          |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 1125488 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

-1

٦



Reported: 05/17/2023 18:06 Project: City Terrace Project Number: 36908 Project Manager: April McGuire

## Laboratory / Client Sample Cross Reference

| Laboratory | Client Sample Informati | 01                    |                |                  |
|------------|-------------------------|-----------------------|----------------|------------------|
| 2309559-01 | COC Number:             |                       | Receive Date:  | 05/13/2023 09:15 |
|            | Project Number:         |                       | Sampling Date: | 05/11/2023 12:15 |
|            | Sampling Location:      |                       | Sample Depth:  |                  |
|            | Sampling Point:         | AA-UST-A-20230511     | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                | Sample Type:   | Vapor or Air     |
| 2309559-02 | COC Number:             |                       | Receive Date:  | 05/13/2023 09:15 |
|            | Project Number:         |                       | Sampling Date: | 05/11/2023 11:40 |
|            | Sampling Location:      |                       | Sample Depth:  |                  |
|            | Sampling Point:         | AA-UST-B-20230511     | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                | Sample Type:   | Vapor or Air     |
| 2309559-03 | COC Number:             |                       | Receive Date:  | 05/13/2023 09:15 |
|            | Project Number:         |                       | Sampling Date: | 05/11/2023 12:25 |
|            | Sampling Location:      |                       | Sampling Date. |                  |
|            |                         | <br>AA-UST-C-20230511 |                | Air              |
|            | Sampling Point:         | Client                | Lab Matrix:    | Vapor or Air     |
|            | Sampled By:             | Gient                 | Sample Type:   |                  |
| 2309559-04 | COC Number:             |                       | Receive Date:  | 05/13/2023 09:15 |
|            | Project Number:         |                       | Sampling Date: | 05/11/2023 12:25 |
|            | Sampling Location:      |                       | Sample Depth:  |                  |
|            | Sampling Point:         | AA-UST-C-20230511-D   | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                | Sample Type:   | Vapor or Air     |
| 2309559-05 | COC Number:             |                       | Receive Date:  | 05/13/2023 09:15 |
|            | Project Number:         |                       | Sampling Date: | 05/11/2023 12:40 |
|            | Sampling Location:      |                       | Sample Depth:  |                  |
|            | Sampling Point:         | AA-UST-D-20230511     | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                | Sample Type:   | Vapor or Air     |
| 2309559-06 | COC Number:             |                       | Receive Date:  | 05/13/2023 09:15 |
|            | Project Number:         |                       | Sampling Date: | 05/11/2023 11:15 |
|            | Sampling Location:      |                       | Sample Depth:  |                  |
|            | Sampling Point:         | AA-CT-20230511        | Lab Matrix:    | Air              |
|            | Sampled By:             | Client                | Sample Type:   | Vapor or Air     |

Page 5 of 32



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 230              | 09559-01 <b>Cli</b> | ent Sample | e Name: | AA-UST-A     | AA-UST-A-20230511, 5/11/2023 12:15:00PM, Client |               |            |              |     |  |
|---------------------------------|---------------------|------------|---------|--------------|-------------------------------------------------|---------------|------------|--------------|-----|--|
| Constituent                     |                     | Result     | Units   | PQL          | MDL                                             | Method        | MB<br>Bias | Lab<br>Quals | DCN |  |
| Acetone                         |                     | 3.5        | ug/m3   | 3.2          | 0.024                                           | EPA-TO-15-SIM | ND         | A01,V11      | 1   |  |
| Benzene                         |                     | 1.2        | ug/m3   | 0.054        | 0.0034                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| Benzyl chloride                 |                     | ND         | ug/m3   | 0.54         | 0.0056                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| Carbon tetrachloride            |                     | ND         | ug/m3   | 0.21         | 0.0067                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| Chlorobenzene                   |                     | ND         | ug/m3   | 0.11         | 0.0085                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| Chloroform                      |                     | ND         | ug/m3   | 0.054        | 0.0062                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| 1,2-Dibromoethane               |                     | ND         | ug/m3   | 0.21         | 0.015                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| 1,2-Dichlorobenzene             |                     | ND         | ug/m3   | 0.21         | 0.012                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| 1,3-Dichlorobenzene             |                     | ND         | ug/m3   | 0.21         | 0.014                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| 1,4-Dichlorobenzene             |                     | ND         | ug/m3   | 0.21         | 0.017                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| Dichlorodifluoromethane         |                     | 2.9        | ug/m3   | 0.16         | 0.017                                           | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| I,1-Dichloroethane              |                     | ND         | ug/m3   | 0.054        | 0.0044                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| ,2-Dichloroethane               |                     | ND         | ug/m3   | 0.11         | 0.0049                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| ,1-Dichloroethene               |                     | ND         | ug/m3   | 0.054        | 0.0083                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| cis-1,2-Dichloroethene          |                     | ND         | ug/m3   | 0.054        | 0.0047                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| rans-1,2-Dichloroethene         |                     | ND         | ug/m3   | 0.054        | 0.0080                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| rans-1,3-Dichloropropene        |                     | ND         | ug/m3   | 0.054        | 0.014                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| ,1-Difluoroethane               |                     | 0.98       | ug/m3   | 5.4          | 0.0029                                          | EPA-TO-15-SIM | ND         | J,A01        | 2   |  |
| Ethylbenzene                    |                     | 0.57       | ug/m3   | 0.054        | 0.018                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| Methylene chloride              |                     | ND         | ug/m3   | 0.21         | 0.0082                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| Fetrachloroethene               |                     | ND         | ug/m3   | 0.11         | 0.012                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| Toluene                         |                     | 2.4        | ug/m3   | 0.32         | 0.020                                           | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| I,1,1-Trichloroethane           |                     | ND         | ug/m3   | 0.11         | 0.0059                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| 1,1,2-Trichloroethane           |                     | ND         | ug/m3   | 0.11         | 0.0059                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| Trichloroethene                 |                     | ND         | ug/m3   | 0.11         | 0.010                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| Trichlorofluoromethane          |                     | 1.4        | ug/m3   | 0.054        | 0.0061                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| 1,1,2-Trichloro-1,2,2-trifluoro | ethane              | 0.61       | ug/m3   | 0.11         | 0.0083                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| /inyl chloride                  |                     | ND         | ug/m3   | 0.021        | 0.0049                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| o- & m-Xylenes                  |                     | 2.4        | ug/m3   | 0.054        | 0.0088                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| o-Xylene                        |                     | 0.81       | ug/m3   | 0.054        | 0.0047                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| Fotal Xylenes                   |                     | 3.2        | ug/m3   | 0.11         | 0.014                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| 4-Bromofluorobenzene (Surro     | gate)               | 99.7       | %       | 50 - 150 (LC | L - UCL)                                        | EPA-TO-15-SIM |            |              | 1   |  |
| I-Bromofluorobenzene (Surro     | gate)               | 112        | %       | 50 - 150 (LC | L - UCL)                                        | EPA-TO-15-SIM |            |              | 2   |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample I | <b>D:</b> 2309559-01 | Client San     | Client Sample Name: AA-UST-A-20230511, 5/ |         |            |          | 0511, 5/11/2023 12:15:00PM, Client |           |  |  |
|--------------|----------------------|----------------|-------------------------------------------|---------|------------|----------|------------------------------------|-----------|--|--|
|              |                      |                | Run                                       |         |            |          | QC                                 |           |  |  |
| DCN          | Method               | Prep Date      | Date/Time                                 | Analyst | Instrument | Dilution | Batch ID                           |           |  |  |
| 1            | EPA-TO-15-SIM        | 05/15/23 13:13 | 05/15/23 23:25                            | RMK     | MS-A1      | 3.210    | B166092                            | EPA TO-15 |  |  |
| 2            | EPA-TO-15-SIM        | 05/15/23 13:13 | 05/15/23 19:30                            | RMK     | MS-A1      | 1.070    | B166092                            | EPA TO-15 |  |  |



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2309559-01 | Client Sampl | e Name: | AA-UST-A | nt  |            |            |              |     |
|----------------|------------|--------------|---------|----------|-----|------------|------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 2.9          | ppmv    | 3.2      | 2.9 | ASTM-D1946 | ND         | J            | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/16/23 16:00 | 05/16/23 20:59 | RMK     | GC-A1      | 1.610    | B166202  | No Prep     |



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23              | 09559-02 | Client Sampl | e Name: | AA-UST-E     | AA-UST-B-20230511, 5/11/2023 11:40:00AM, Client |               |            |              |     |  |
|--------------------------------|----------|--------------|---------|--------------|-------------------------------------------------|---------------|------------|--------------|-----|--|
| Constituent                    |          | Result       | Units   | PQL          | MDL                                             | Method        | MB<br>Bias | Lab<br>Quals | DCN |  |
| Acetone                        |          | 4.4          | ug/m3   | 3.3          | 0.025                                           | EPA-TO-15-SIM | ND         | A01,V11      | 1   |  |
| Benzene                        |          | 1.2          | ug/m3   | 0.056        | 0.0036                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| Benzyl chloride                |          | ND           | ug/m3   | 0.56         | 0.0058                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| Carbon tetrachloride           |          | ND           | ug/m3   | 0.22         | 0.0070                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| Chlorobenzene                  |          | ND           | ug/m3   | 0.11         | 0.0088                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| Chloroform                     |          | ND           | ug/m3   | 0.056        | 0.0064                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| ,2-Dibromoethane               |          | ND           | ug/m3   | 0.22         | 0.016                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| ,2-Dichlorobenzene             |          | ND           | ug/m3   | 0.22         | 0.012                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| ,3-Dichlorobenzene             |          | ND           | ug/m3   | 0.22         | 0.014                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| ,4-Dichlorobenzene             |          | ND           | ug/m3   | 0.22         | 0.018                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| Dichlorodifluoromethane        |          | 2.9          | ug/m3   | 0.17         | 0.017                                           | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| ,1-Dichloroethane              |          | ND           | ug/m3   | 0.056        | 0.0046                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| ,2-Dichloroethane              |          | ND           | ug/m3   | 0.11         | 0.0051                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| ,1-Dichloroethene              |          | ND           | ug/m3   | 0.056        | 0.0087                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| is-1,2-Dichloroethene          |          | ND           | ug/m3   | 0.056        | 0.0049                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| rans-1,2-Dichloroethene        |          | ND           | ug/m3   | 0.056        | 0.0083                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| rans-1,3-Dichloropropene       |          | ND           | ug/m3   | 0.056        | 0.014                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| ,1-Difluoroethane              |          | 1.9          | ug/m3   | 5.6          | 0.0030                                          | EPA-TO-15-SIM | ND         | J,A01        | 2   |  |
| Ethylbenzene                   |          | 0.71         | ug/m3   | 0.056        | 0.019                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| Nethylene chloride             |          | ND           | ug/m3   | 0.22         | 0.0085                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| etrachloroethene               |          | ND           | ug/m3   | 0.11         | 0.012                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| oluene                         |          | 2.9          | ug/m3   | 0.33         | 0.021                                           | EPA-TO-15-SIM | ND         | A01          | 1   |  |
| ,1,1-Trichloroethane           |          | ND           | ug/m3   | 0.11         | 0.0061                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| ,1,2-Trichloroethane           |          | ND           | ug/m3   | 0.11         | 0.0061                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| richloroethene                 |          | ND           | ug/m3   | 0.11         | 0.011                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| richlorofluoromethane          |          | 1.4          | ug/m3   | 0.056        | 0.0063                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| ,1,2-Trichloro-1,2,2-trifluoro | oethane  | 0.61         | ug/m3   | 0.11         | 0.0087                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| /inyl chloride                 |          | ND           | ug/m3   | 0.022        | 0.0051                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| o- & m-Xylenes                 |          | 3.2          | ug/m3   | 0.056        | 0.0091                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| o-Xylene                       |          | 1.1          | ug/m3   | 0.056        | 0.0049                                          | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| otal Xylenes                   |          | 4.3          | ug/m3   | 0.11         | 0.014                                           | EPA-TO-15-SIM | ND         | A01          | 2   |  |
| -Bromofluorobenzene (Surr      | ogate)   | 96.4         | %       | 50 - 150 (LC | L - UCL)                                        | EPA-TO-15-SIM |            |              | 1   |  |
| 4-Bromofluorobenzene (Surro    | ogate)   | 107          | %       | 50 - 150 (LC | L - UCL)                                        | EPA-TO-15-SIM |            |              | 2   |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample II | <b>D:</b> 2309559-02 | Client San     | nple Name:     | AA-UST-B-20 | 230511, 5/11/20 | 511, 5/11/2023 11:40:00AM, Client |          |           |  |  |
|---------------|----------------------|----------------|----------------|-------------|-----------------|-----------------------------------|----------|-----------|--|--|
|               |                      |                | Run            |             |                 |                                   | QC       |           |  |  |
| DCN           | Method               | Prep Date      | Date/Time      | Analyst     | Instrument      | Dilution                          | Batch ID |           |  |  |
| 1             | EPA-TO-15-SIM        | 05/15/23 13:13 | 05/15/23 23:59 | RMK         | MS-A1           | 3.330                             | B166092  | EPA TO-15 |  |  |
| 2             | EPA-TO-15-SIM        | 05/15/23 13:13 | 05/15/23 20:10 | RMK         | MS-A1           | 1.110                             | B166092  | EPA TO-15 |  |  |



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2309559-02 | Client Sample Name: AA-UST-B-20230511, 5/11/2023 11:40:00AM, Client |       |     |     |            |            |              |     |
|----------------|------------|---------------------------------------------------------------------|-------|-----|-----|------------|------------|--------------|-----|
| Constituent    |            | Result                                                              | Units | PQL | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 3.3                                                                 | ppmv  | 3.3 | 3.0 | ASTM-D1946 | ND         |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/16/23 16:00 | 05/16/23 21:19 | RMK     | GC-A1      | 1.660    | B166202  | No Prep     |



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23               | 09559-03 | Client Sampl | e Name: | AA-UST-C     | C-20230511 | nt            |            |              |     |
|---------------------------------|----------|--------------|---------|--------------|------------|---------------|------------|--------------|-----|
| Constituent                     |          | Result       | Units   | PQL          | MDL        | Method        | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                         |          | 5.4          | ug/m3   | 3.2          | 0.024      | EPA-TO-15-SIM | ND         | A01,V11      | 1   |
| Benzene                         |          | 0.61         | ug/m3   | 0.052        | 0.0034     | EPA-TO-15-SIM | ND         | A01          | 2   |
| Benzyl chloride                 |          | ND           | ug/m3   | 0.52         | 0.0055     | EPA-TO-15-SIM | ND         | A01          | 2   |
| Carbon tetrachloride            |          | ND           | ug/m3   | 0.21         | 0.0066     | EPA-TO-15-SIM | ND         | A01          | 2   |
| Chlorobenzene                   |          | ND           | ug/m3   | 0.10         | 0.0083     | EPA-TO-15-SIM | ND         | A01          | 2   |
| Chloroform                      |          | ND           | ug/m3   | 0.052        | 0.0061     | EPA-TO-15-SIM | ND         | A01          | 2   |
| 1,2-Dibromoethane               |          | ND           | ug/m3   | 0.21         | 0.015      | EPA-TO-15-SIM | ND         | A01          | 2   |
| 1,2-Dichlorobenzene             |          | ND           | ug/m3   | 0.21         | 0.012      | EPA-TO-15-SIM | ND         | A01          | 2   |
| 1,3-Dichlorobenzene             |          | ND           | ug/m3   | 0.21         | 0.014      | EPA-TO-15-SIM | ND         | A01          | 2   |
| 1,4-Dichlorobenzene             |          | ND           | ug/m3   | 0.21         | 0.017      | EPA-TO-15-SIM | ND         | A01          | 2   |
| Dichlorodifluoromethane         |          | 2.9          | ug/m3   | 0.16         | 0.016      | EPA-TO-15-SIM | ND         | A01          | 1   |
| 1,1-Dichloroethane              |          | ND           | ug/m3   | 0.052        | 0.0043     | EPA-TO-15-SIM | ND         | A01          | 2   |
| 1,2-Dichloroethane              |          | ND           | ug/m3   | 0.10         | 0.0048     | EPA-TO-15-SIM | ND         | A01          | 2   |
| 1,1-Dichloroethene              |          | ND           | ug/m3   | 0.052        | 0.0082     | EPA-TO-15-SIM | ND         | A01          | 2   |
| cis-1,2-Dichloroethene          |          | ND           | ug/m3   | 0.052        | 0.0046     | EPA-TO-15-SIM | ND         | A01          | 2   |
| trans-1,2-Dichloroethene        |          | ND           | ug/m3   | 0.052        | 0.0079     | EPA-TO-15-SIM | ND         | A01          | 2   |
| trans-1,3-Dichloropropene       |          | ND           | ug/m3   | 0.052        | 0.014      | EPA-TO-15-SIM | ND         | A01          | 2   |
| 1,1-Difluoroethane              |          | 0.47         | ug/m3   | 5.2          | 0.0028     | EPA-TO-15-SIM | ND         | J,A01        | 2   |
| Ethylbenzene                    |          | 0.35         | ug/m3   | 0.052        | 0.018      | EPA-TO-15-SIM | ND         | A01          | 2   |
| Methylene chloride              |          | ND           | ug/m3   | 0.21         | 0.0081     | EPA-TO-15-SIM | ND         | A01          | 2   |
| Tetrachloroethene               |          | ND           | ug/m3   | 0.10         | 0.012      | EPA-TO-15-SIM | ND         | A01          | 2   |
| Toluene                         |          | 1.7          | ug/m3   | 0.10         | 0.0065     | EPA-TO-15-SIM | ND         | A01          | 2   |
| 1,1,1-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0058     | EPA-TO-15-SIM | ND         | A01          | 2   |
| 1,1,2-Trichloroethane           |          | ND           | ug/m3   | 0.10         | 0.0058     | EPA-TO-15-SIM | ND         | A01          | 2   |
| Trichloroethene                 |          | ND           | ug/m3   | 0.10         | 0.010      | EPA-TO-15-SIM | ND         | A01          | 2   |
| Trichlorofluoromethane          |          | 1.4          | ug/m3   | 0.052        | 0.0060     | EPA-TO-15-SIM | ND         | A01          | 2   |
| 1,1,2-Trichloro-1,2,2-trifluoro | ethane   | 0.62         | ug/m3   | 0.10         | 0.0082     | EPA-TO-15-SIM | ND         | A01          | 2   |
| /inyl chloride                  |          | ND           | ug/m3   | 0.021        | 0.0048     | EPA-TO-15-SIM | ND         | A01          | 2   |
| p- & m-Xylenes                  |          | 1.4          | ug/m3   | 0.052        | 0.0086     | EPA-TO-15-SIM | ND         | A01          | 2   |
| o-Xylene                        |          | 0.50         | ug/m3   | 0.052        | 0.0046     | EPA-TO-15-SIM | ND         | A01          | 2   |
| Total Xylenes                   |          | 1.9          | ug/m3   | 0.10         | 0.014      | EPA-TO-15-SIM | ND         | A01          | 2   |
| 4-Bromofluorobenzene (Surro     | gate)    | 96.4         | %       | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM |            |              | 1   |
| 4-Bromofluorobenzene (Surro     | gate)    | 110          | %       | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM |            |              | 2   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

An results listed in this report are for the exclusive use of the submitting party. Tace Analytical assumes in responsionity for report are ration, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsionity for report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separation, determine assumes in responsion in report are ratio, separatio, determine assumes in responsion in report are ratio, separatio, determine assumes in responsion in report are ratio, separatio, determine assumes in responsion in report are ratio, separatio, determine astructure assum



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample II | <b>D:</b> 2309559-03 | Client San     | nple Name:     | 230511, 5/11/20 | 0511, 5/11/2023 12:25:00PM, Client |          |          |           |  |
|---------------|----------------------|----------------|----------------|-----------------|------------------------------------|----------|----------|-----------|--|
|               |                      | -              | Run            |                 |                                    |          | QC       |           |  |
| DCN           | Method               | Prep Date      | Date/Time      | Analyst         | Instrument                         | Dilution | Batch ID |           |  |
| 1             | EPA-TO-15-SIM        | 05/15/23 13:13 | 05/16/23 00:33 | RMK             | MS-A1                              | 3.150    | B166092  | EPA TO-15 |  |
| 2             | EPA-TO-15-SIM        | 05/15/23 13:13 | 05/15/23 20:51 | RMK             | MS-A1                              | 1.050    | B166092  | EPA TO-15 |  |



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2309559-03 | Client Sampl | e Name: |     |     |            |            |              |     |
|----------------|------------|--------------|---------|-----|-----|------------|------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 3.0          | ppmv    | 3.2 | 2.8 | ASTM-D1946 | ND         | J            | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/16/23 16:00 | 05/16/23 21:39 | RMK     | GC-A1      | 1.580    | B166202  | No Prep     |



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| Acetone         3.5         ug/m3         1.1         0.083         EPA-TO-15-SMM         ND         AD1,V11         1           Benzer         0.65         ug/m3         0.056         0.0036         EPA-TO-15-SMM         ND         AD1         1           Benzyl chloride         ND         ug/m3         0.22         0.0076         EPA-TO-15-SMM         ND         AD1         1           Catoon tetrachtoride         ND         ug/m3         0.22         0.0076         EPA-TO-15-SMM         ND         AD1         1           Chloroberzene         ND         ug/m3         0.22         0.016         EPA-TO-15-SMM         ND         AD1         1           12-Dichoroberzene         ND         ug/m3         0.22         0.016         EPA-TO-15-SMM         ND         AD1         1           12-Dichoroberzene         ND         ug/m3         0.22         0.014         EPA-TO-15-SMM         ND         AD1         1           12-Dichoroberzene         ND         ug/m3         0.22         0.014         EPA-TO-15-SMM         ND         AD1         1           14-Dichoroberzene         ND         ug/m3         0.056         0.0045         EPA-TO-15-SMM         ND         <                                                                                                                                                                                                                                                                                                                                                                           | BCL Sample ID: 2309               | 559-04 | Client Samp | le Name: | e: AA-UST-C-20230511-D, 5/11/2023 12:25:00PM, Client |           |               |      |         |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------|-------------|----------|------------------------------------------------------|-----------|---------------|------|---------|-----|
| Benzzne         0.65         ug/m3         0.055         0.0056         EPA-TO-15-SIM         ND         A01         1           Benzyl chloride         ND         ug/m3         0.56         0.0058         EPA-TO-15-SIM         ND         A01         1           Carlor iterzachioride         ND         ug/m3         0.56         0.0064         EPA-TO-15-SIM         ND         A01         1           Charoterzace         ND         ug/m3         0.22         0.016         EPA-TO-15-SIM         ND         A01         1           12-Dibromothane         ND         ug/m3         0.22         0.016         EPA-TO-15-SIM         ND         A01         1           12-Dibromothane         ND         ug/m3         0.22         0.016         EPA-TO-15-SIM         ND         A01         1           12-Dichorobenzene         ND         ug/m3         0.22         0.018         EPA-TO-15-SIM         ND         A01         1           12-Dichorobenzene         ND         ug/m3         0.056         0.068         EPA-TO-15-SIM         ND         A01         1           12-Dichorobenzene         ND         ug/m3         0.056         0.068         EPA-TO-15-SIM         ND                                                                                                                                                                                                                                                                                                                                                                                  | Constituent                       | ÷      |             |          |                                                      | MDL       |               | Bias | Quals   | DCN |
| Benzyl chloride         ND         ug'm3         0.56         0.0058         EPA-TO-15-SIM         ND         A01         1           Carbon letrachloride         ND         ug/m3         0.22         0.0070         EPA-TO-15-SIM         ND         A01         1           Chlorobenzene         ND         ug/m3         0.011         0.0088         EPA-TO-15-SIM         ND         A01         1           Chlorobenzene         ND         ug/m3         0.022         0.016         EPA-TO-15-SIM         ND         A01         1           1.2-Dichorobenzene         ND         ug/m3         0.22         0.014         EPA-TO-15-SIM         ND         A01         1           1.2-Dichorobenzene         ND         ug/m3         0.22         0.018         EPA-TO-15-SIM         ND         A01         1           1.2-Dichorobenzene         ND         ug/m3         0.22         0.018         EPA-TO-15-SIM         ND         A01         1           1.2-Dichorobenzene         ND         ug/m3         0.056         0.0048         EPA-TO-15-SIM         ND         A01         1           1.4-Dichorobenzene         ND         ug/m3         0.056         0.0049         EPA-TO-15-SIM <t< th=""><th>Acetone</th><th></th><th>3.5</th><th>ug/m3</th><th>1.1</th><th>0.0083</th><th>EPA-TO-15-SIM</th><th>ND</th><th>A01,V11</th><th>1</th></t<>                                                                                                                                                                                                                    | Acetone                           |        | 3.5         | ug/m3    | 1.1                                                  | 0.0083    | EPA-TO-15-SIM | ND   | A01,V11 | 1   |
| Carbon tetrachloride         ND         ug/m3         0.22         0.0070         EPA-T0-15-SIM         ND         A01         1           Chlorobenzene         ND         ug/m3         0.11         0.088         EPA-T0-15-SIM         ND         A01         1           Chlorobenzene         ND         ug/m3         0.22         0.016         EPA-T0-15-SIM         ND         A01         1           1,2-Dichorobenzene         ND         ug/m3         0.22         0.016         EPA-T0-15-SIM         ND         A01         1           1,2-Dichorobenzene         ND         ug/m3         0.22         0.018         EPA-T0-15-SIM         ND         A01         1           1,4-Dichorobenzene         ND         ug/m3         0.22         0.018         EPA-T0-15-SIM         ND         A01         1           1,4-Dichorobenzene         ND         ug/m3         0.056         0.0046         EPA-T0-15-SIM         ND         A01         1           1,1-Dichorobenzene         ND         ug/m3         0.056         0.0046         EPA-T0-15-SIM         ND         A01         1           1,1-Dichorobenzene         ND         ug/m3         0.056         0.0049         EPA-T0-15-SIM         <                                                                                                                                                                                                                                                                                                                                                                  | Benzene                           |        | 0.65        | ug/m3    | 0.056                                                | 0.0036    | EPA-TO-15-SIM | ND   | A01     | 1   |
| Chlorobenzene         ND         ug/m3         0.11         0.0088         EPA-TD-15SIM         ND         A01         1           Chlorobrrm         ND         ug/m3         0.056         0.0064         EPA-TD-15SIM         ND         A01         1           1.2-Dichorobenzene         ND         ug/m3         0.22         0.016         EPA-TD-15SIM         ND         A01         1           1.2-Dichorobenzene         ND         ug/m3         0.22         0.014         EPA-TD-15SIM         ND         A01         1           1.3-Dichorobenzene         ND         ug/m3         0.22         0.018         EPA-TD-15SIM         ND         A01         1           1.4-Dichorobenzene         ND         ug/m3         0.056         0.0065         EPA-TD-15SIM         ND         A01         1           1.1-Dichorobenzene         ND         ug/m3         0.056         0.0067         EPA-TD-15SIM         ND         A01         1           1.1-Dichorobenzene         ND         ug/m3         0.056         0.0087         EPA-TD-15SIM         ND         A01         1           1.1-Dichorobenzene         ND         ug/m3         0.056         0.0081         EPA-TD-15SIM         ND                                                                                                                                                                                                                                                                                                                                                                           | Benzyl chloride                   |        | ND          | ug/m3    | 0.56                                                 | 0.0058    | EPA-TO-15-SIM | ND   | A01     | 1   |
| Dickloroform         ND         ug/m3         0.056         0.0064         EPA-TO-15.SIM         ND         A01         1           1.2-Dibromoethane         ND         ug/m3         0.22         0.016         EPA-TO-15.SIM         ND         A01         1           1.2-Dibromoethane         ND         ug/m3         0.22         0.012         EPA-TO-15.SIM         ND         A01         1           1.3-Dichlorobenzene         ND         ug/m3         0.22         0.018         EPA-TO-15.SIM         ND         A01         1           1.4-Dichlorobenzene         ND         ug/m3         0.026         0.0068         EPA-TO-15.SIM         ND         A01         1           1.4-Dichlorobethane         ND         ug/m3         0.056         0.0068         EPA-TO-15.SIM         ND         A01         1           1.1-Dichlorobethane         ND         ug/m3         0.056         0.0097         EPA-TO-15.SIM         ND         A01         1           1.1-Dichloroethane         ND         ug/m3         0.056         0.0097         EPA-TO-15.SIM         ND         A01         1           1.1-Dichloroethane         ND         ug/m3         0.056         0.0014         EPA-TO-15.SIM                                                                                                                                                                                                                                                                                                                                                                   | Carbon tetrachloride              |        | ND          | ug/m3    | 0.22                                                 | 0.0070    | EPA-TO-15-SIM | ND   | A01     | 1   |
| 1.2.Dibromoethane       ND       ug/m3       0.22       0.016       EPA-TO-15-SIM       ND       A01       1         1.2.Dibriomoethane       ND       ug/m3       0.22       0.012       EPA-TO-15-SIM       ND       A01       1         1.3.Dichlorobenzene       ND       ug/m3       0.22       0.014       EPA-TO-15-SIM       ND       A01       1         1.4.Dichlorobenzene       ND       ug/m3       0.22       0.018       EPA-TO-15-SIM       ND       A01       1         1.4.Dichlorobenzene       ND       ug/m3       0.056       0.0058       EPA-TO-15-SIM       ND       A01       1         1.1.Dichlorobenzene       ND       ug/m3       0.056       0.0046       EPA-TO-15-SIM       ND       A01       1         1.2.Dichloroethane       ND       ug/m3       0.056       0.0047       EPA-TO-15-SIM       ND       A01       1         1.4.Dichloroethene       ND       ug/m3       0.056       0.0049       EPA-TO-15-SIM       ND       A01       1         1.5.Dichloroethene       ND       ug/m3       0.056       0.0049       EPA-TO-15-SIM       ND       A01       1         1.4.Dichloroethene       ND       ug/m3<                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chlorobenzene                     |        | ND          | ug/m3    | 0.11                                                 | 0.0088    | EPA-TO-15-SIM | ND   | A01     | 1   |
| 1.2.Dichlorobenzene       ND       ug/m3       0.22       0.012       EPA-TO-15-SIM       ND       A01       1         1.3.Dichlorobenzene       ND       ug/m3       0.22       0.014       EPA-TO-15-SIM       ND       A01       1         1.4.Dichlorobenzene       ND       ug/m3       0.22       0.018       EPA-TO-15-SIM       ND       A01       1         1.4.Dichlorobenzene       ND       ug/m3       0.22       0.018       EPA-TO-15-SIM       ND       A01       1         1.1.Dichlorobenzene       ND       ug/m3       0.056       0.0046       EPA-TO-15-SIM       ND       A01       1         1.2.Dichlorobenzene       ND       ug/m3       0.0156       0.0047       EPA-TO-15-SIM       ND       A01       1         1.2.Dichlorobenzene       ND       ug/m3       0.056       0.0048       EPA-TO-15-SIM       ND       A01       1         1.2.Dichlorobenzene       ND       ug/m3       0.056       0.0043       EPA-TO-15-SIM       ND       A01       1         1.1.Dichlorobenzene       ND       ug/m3       0.566       0.0043       EPA-TO-15-SIM       ND       A01       1         1.1.1.Dichlorobenzene       ND                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chloroform                        |        | ND          | ug/m3    | 0.056                                                | 0.0064    | EPA-TO-15-SIM | ND   | A01     | 1   |
| ND         ug/m3         0.22         0.014         EPA-TO-15-SIM         ND         A01         1           1.4-Dichlorobenzene         ND         ug/m3         0.22         0.018         EPA-TO-15-SIM         ND         A01         1           1.4-Dichlorobenzene         2.8         ug/m3         0.026         0.0088         EPA-TO-15-SIM         ND         A01         1           Dichlorodifluoromethane         ND         ug/m3         0.016         EPA-TO-15-SIM         ND         A01         1           1.1-Dichloroethane         ND         ug/m3         0.056         0.0087         EPA-TO-15-SIM         ND         A01         1           1.2-Dichloroethene         ND         ug/m3         0.056         0.0087         EPA-TO-15-SIM         ND         A01         1           1.1-Dichloroethene         ND         ug/m3         0.056         0.0083         EPA-TO-15-SIM         ND         A01         1           1.1-Dichloroethene         ND         ug/m3         0.056         0.014         EPA-TO-15-SIM         ND         A01         1           1.1-Difloroethane         0.47         ug/m3         0.056         0.019         EPA-TO-15-SIM         ND         A01                                                                                                                                                                                                                                                                                                                                                                         | 1,2-Dibromoethane                 |        | ND          | ug/m3    | 0.22                                                 | 0.016     | EPA-TO-15-SIM | ND   | A01     | 1   |
| ND         ug/m3         0.22         0.018         EPA-TO-15-SIM         ND         A01         1           Dichlorodifluoromethane         2.8         ug/m3         0.056         0.0058         EPA-TO-15-SIM         ND         A01         1           Li,1-Dichlorodifluoromethane         ND         ug/m3         0.056         0.0046         EPA-TO-15-SIM         ND         A01         1           1,2-Dichloroethane         ND         ug/m3         0.11         0.0051         EPA-TO-15-SIM         ND         A01         1           1,1-Dichloroethene         ND         ug/m3         0.056         0.0087         EPA-TO-15-SIM         ND         A01         1           1,1-Dichloroethene         ND         ug/m3         0.056         0.0083         EPA-TO-15-SIM         ND         A01         1           1,1-Dichloroethene         ND         ug/m3         0.056         0.014         EPA-TO-15-SIM         ND         A01         1           1,1-Difloroethane         ND         ug/m3         0.056         0.019         EPA-TO-15-SIM         ND         A01         1           1,1-Difloroethane         0.44         ug/m3         0.019         EPA-TO-15-SIM         ND         A01 <td>1,2-Dichlorobenzene</td> <td></td> <td>ND</td> <td>ug/m3</td> <td>0.22</td> <td>0.012</td> <td>EPA-TO-15-SIM</td> <td>ND</td> <td>A01</td> <td>1</td>                                                                                                                                                                                                       | 1,2-Dichlorobenzene               |        | ND          | ug/m3    | 0.22                                                 | 0.012     | EPA-TO-15-SIM | ND   | A01     | 1   |
| Dichlorodifluoromethane         2.8         ug/m3         0.056         0.0056         FPA-TO-15-SIM         ND         A01         1           1,1-Dichlorodifluoromethane         ND         ug/m3         0.056         0.0066         EPA-TO-15-SIM         ND         A01         1           1,2-Dichlorodifluoromethane         ND         ug/m3         0.056         0.0067         EPA-TO-15-SIM         ND         A01         1           1,1-Dichlorodifuoromethane         ND         ug/m3         0.056         0.0097         EPA-TO-15-SIM         ND         A01         1           1,1-Dichlorodifuoromethane         ND         ug/m3         0.056         0.0097         EPA-TO-15-SIM         ND         A01         1           1,1-Dichlorodifuoromethane         ND         ug/m3         0.056         0.0033         EPA-TO-15-SIM         ND         A01         1           trans-1,2-Dichlorodifuoroppene         ND         ug/m3         0.056         0.014         EPA-TO-15-SIM         ND         A01         1           1,1-Diffuoroethane         0.47         ug/m3         0.056         0.019         EPA-TO-15-SIM         ND         A01         1           1,1-Diffuoroethane         0.44         ug/m3                                                                                                                                                                                                                                                                                                                                              | 1,3-Dichlorobenzene               |        | ND          | ug/m3    | 0.22                                                 | 0.014     | EPA-TO-15-SIM | ND   | A01     | 1   |
| 1,1-Dickloroethane         ND         ug/m3         0.056         0.0046         EPA-TO-15-SIM         ND         A01         1           1,1-Dickloroethane         ND         ug/m3         0.11         0.0051         EPA-TO-15-SIM         ND         A01         1           1,1-Dickloroethane         ND         ug/m3         0.056         0.0097         EPA-TO-15-SIM         ND         A01         1           1,1-Dickloroethane         ND         ug/m3         0.056         0.0097         EPA-TO-15-SIM         ND         A01         1           1,1-Dickloroethane         ND         ug/m3         0.056         0.0093         EPA-TO-15-SIM         ND         A01         1           trans-1,2-Dickloroethane         ND         ug/m3         0.056         0.014         EPA-TO-15-SIM         ND         A01         1           trans-1,2-Dickloroethane         0.47         ug/m3         5.6         0.0030         EPA-TO-15-SIM         ND         A01         1           trans-1,2-Dickloroethane         0.47         ug/m3         0.22         0.0085         EPA-TO-15-SIM         ND         A01         1           trachoroethane         ND         ug/m3         0.11         0.0012         <                                                                                                                                                                                                                                                                                                                                                         | 1,4-Dichlorobenzene               |        | ND          | ug/m3    | 0.22                                                 | 0.018     | EPA-TO-15-SIM | ND   | A01     | 1   |
| ND         ug/m3         0.11         0.0051         EPA-TO-15-SIM         ND         A01         1           1.2-Dichloroethane         ND         ug/m3         0.056         0.0087         EPA-TO-15-SIM         ND         A01         1           1.1-Dichloroethane         ND         ug/m3         0.056         0.0087         EPA-TO-15-SIM         ND         A01         1           1.1-Dichloroethane         ND         ug/m3         0.056         0.0083         EPA-TO-15-SIM         ND         A01         1           trans-1.2-Dichloroethane         ND         ug/m3         0.056         0.014         EPA-TO-15-SIM         ND         A01         1           trans-1.3-Dichloroethane         ND         ug/m3         0.056         0.014         EPA-TO-15-SIM         ND         A01         1           trans-1.3-Dichloroethane         0.47         ug/m3         0.56         0.019         EPA-TO-15-SIM         ND         A01         1           trans-1.3-Dichloroethane         0.47         ug/m3         0.56         0.019         EPA-TO-15-SIM         ND         A01         1           trans-1.1-Dichloroethane         0.47         ug/m3         0.11         0.012         EPA-TO-15-SIM                                                                                                                                                                                                                                                                                                                                                         | Dichlorodifluoromethane           |        | 2.8         | ug/m3    | 0.056                                                | 0.0058    | EPA-TO-15-SIM | ND   | A01     | 1   |
| ND         ug/m3         0.056         0.0087         EPA-TO-15-SIM         ND         A01         1           1.1-Dichloroethene         ND         ug/m3         0.056         0.0087         EPA-TO-15-SIM         ND         A01         1           trans-1,2-Dichloroethene         ND         ug/m3         0.056         0.0083         EPA-TO-15-SIM         ND         A01         1           trans-1,2-Dichloroethene         ND         ug/m3         0.056         0.014         EPA-TO-15-SIM         ND         A01         1           trans-1,3-Dichloroptopene         ND         ug/m3         0.056         0.014         EPA-TO-15-SIM         ND         A01         1           trans-1,3-Dichloroptopene         0.47         ug/m3         0.56         0.019         EPA-TO-15-SIM         ND         A01         1           trans-1,3-Dichloroethane         0.34         ug/m3         0.22         0.0085         EPA-TO-15-SIM         ND         A01         1           trans-to-indechene         ND         ug/m3         0.11         0.012         EPA-TO-15-SIM         ND         A01         1           trans-to-indechene         ND         ug/m3         0.11         0.016         EPA-TO-15-SIM                                                                                                                                                                                                                                                                                                                                                         | 1,1-Dichloroethane                |        | ND          | ug/m3    | 0.056                                                | 0.0046    | EPA-TO-15-SIM | ND   | A01     | 1   |
| ND         ug/m3         0.056         0.0049         EPA-TO-15-SIM         ND         A01         1           trans-1,2-Dichloroethene         ND         ug/m3         0.056         0.0083         EPA-TO-15-SIM         ND         A01         1           trans-1,3-Dichloropropene         ND         ug/m3         0.056         0.014         EPA-TO-15-SIM         ND         A01         1           trans-1,3-Dichloropropene         ND         ug/m3         0.056         0.014         EPA-TO-15-SIM         ND         A01         1           trans-1,3-Dichloropropene         0.47         ug/m3         5.6         0.0030         EPA-TO-15-SIM         ND         A01         1           trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-trans-tr | 1,2-Dichloroethane                |        | ND          | ug/m3    | 0.11                                                 | 0.0051    | EPA-TO-15-SIM | ND   | A01     | 1   |
| ND         ug/m3         0.056         0.0083         EPA-TO-15-SIM         ND         A01         1           trans-1,3-Dichloropropene         ND         ug/m3         0.056         0.014         EPA-TO-15-SIM         ND         A01         1           1,1-Difluoroethane         0.47         ug/m3         5.6         0.0030         EPA-TO-15-SIM         ND         A01         1           Ethylbenzene         0.34         ug/m3         0.056         0.019         EPA-TO-15-SIM         ND         A01         1           Methylene chloride         ND         ug/m3         0.22         0.0085         EPA-TO-15-SIM         ND         A01         1           Tetrachloroethane         ND         ug/m3         0.11         0.012         EPA-TO-15-SIM         ND         A01         1           Toluene         1.6         ug/m3         0.11         0.012         EPA-TO-15-SIM         ND         A01         1           1,1,1-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01 </td <td>1,1-Dichloroethene</td> <td></td> <td>ND</td> <td>ug/m3</td> <td>0.056</td> <td>0.0087</td> <td>EPA-TO-15-SIM</td> <td>ND</td> <td>A01</td> <td>1</td>                                                                                                                                                                                                        | 1,1-Dichloroethene                |        | ND          | ug/m3    | 0.056                                                | 0.0087    | EPA-TO-15-SIM | ND   | A01     | 1   |
| ND         ug/m3         0.056         0.014         EPA-TO-15-SIM         ND         A01         1           1,1-Diffuoroethane         0.47         ug/m3         5.6         0.0030         EPA-TO-15-SIM         ND         J,A01         1           Ethylbenzene         0.34         ug/m3         0.056         0.019         EPA-TO-15-SIM         ND         A01         1           Methylene chloride         ND         ug/m3         0.22         0.0085         EPA-TO-15-SIM         ND         A01         1           Tetrachloroethene         ND         ug/m3         0.22         0.0085         EPA-TO-15-SIM         ND         A01         1           Toluene         ND         ug/m3         0.11         0.012         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.011         EPA-TO-15-SIM         ND         A01                                                                                                                                                                                                                                                                                                                                                                            | cis-1,2-Dichloroethene            |        | ND          | ug/m3    | 0.056                                                | 0.0049    | EPA-TO-15-SIM | ND   | A01     | 1   |
| 1,1-Diffuoroethane         0.47         ug/m3         5.6         0.0030         EPA-TO-15-SIM         ND         J,A01         1           Ethylbenzene         0.34         ug/m3         0.056         0.019         EPA-TO-15-SIM         ND         A01         1           Methylene chloride         ND         ug/m3         0.22         0.0085         EPA-TO-15-SIM         ND         A01         1           Tetrachloroethene         ND         ug/m3         0.11         0.012         EPA-TO-15-SIM         ND         A01         1           Toluene         1.6         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.0063         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         0.62         ug/m3         0.01         EPA-TO-15-SIM         ND                                                                                                                                                                                                                                                                                                                                                                     | trans-1,2-Dichloroethene          |        | ND          | ug/m3    | 0.056                                                | 0.0083    | EPA-TO-15-SIM | ND   | A01     | 1   |
| Ethylbenzene         0.34         ug/m3         0.056         0.019         EPA-TO-15-SIM         ND         A01         1           Methylene chloride         ND         ug/m3         0.22         0.0085         EPA-TO-15-SIM         ND         A01         1           Tetrachloroethene         ND         ug/m3         0.11         0.012         EPA-TO-15-SIM         ND         A01         1           Toluene         1.6         ug/m3         0.11         0.0069         EPA-TO-15-SIM         ND         A01         1           1,1,1-Trichloroethane         ND         ug/m3         0.11         0.0069         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.0063         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.0083         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         0.62         ug/m3         0.11         0.0087         EPA-TO-15-SIM <td>trans-1,3-Dichloropropene</td> <td></td> <td>ND</td> <td>ug/m3</td> <td>0.056</td> <td>0.014</td> <td>EPA-TO-15-SIM</td> <td>ND</td> <td>A01</td> <td>1</td>                                                                                                                                                                                                | trans-1,3-Dichloropropene         |        | ND          | ug/m3    | 0.056                                                | 0.014     | EPA-TO-15-SIM | ND   | A01     | 1   |
| ND         ug/m3         0.22         0.0085         EPA-TO-15-SIM         ND         A01         1           Tetrachloroethene         ND         ug/m3         0.11         0.012         EPA-TO-15-SIM         ND         A01         1           Toluene         1.6         ug/m3         0.11         0.0069         EPA-TO-15-SIM         ND         A01         1           1,1,1-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.011         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         1.4         ug/m3         0.056         0.0063         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloro-1,2,2-trifluoroethane         0.62         ug/m3         0.012         0.0051         EPA-TO-15-SIM         <                                                                                                                                                                                                                                                                                                                                                         | 1,1-Difluoroethane                |        | 0.47        | ug/m3    | 5.6                                                  | 0.0030    | EPA-TO-15-SIM | ND   | J,A01   | 1   |
| Tetrachloroethene         ND         ug/m3         0.11         0.012         EPA-TO-15-SIM         ND         A01         1           Toluene         1.6         ug/m3         0.11         0.0069         EPA-TO-15-SIM         ND         A01         1           1,1,1-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.011         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloro-1,2,2-trifluoroethane         0.62         ug/m3         0.0163         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloro-1,2,2-trifluoroethane         0.62         ug/m3         0.011         0.0087         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloro-1,2,2-trifluoroethane         0.62         ug/m3         0.022 <th0< td=""><td>Ethylbenzene</td><td></td><td>0.34</td><td>ug/m3</td><td>0.056</td><td>0.019</td><td>EPA-TO-15-SIM</td><td>ND</td><td>A01</td><td>1</td></th0<>                                                                                                                                                                                    | Ethylbenzene                      |        | 0.34        | ug/m3    | 0.056                                                | 0.019     | EPA-TO-15-SIM | ND   | A01     | 1   |
| Toluene         1.6         ug/m3         0.11         0.0069         EPA-TO-15-SIM         ND         A01         1           1,1,1-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           Trichloroethane         ND         ug/m3         0.11         0.011         EPA-TO-15-SIM         ND         A01         1           Trichlorofluoromethane         1.4         ug/m3         0.056         0.0063         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloro-1,2,2-trifluoroethane         0.62         ug/m3         0.01         0.0087         EPA-TO-15-SIM         ND         A01         1           Vinyl chloride         ND         ug/m3         0.022         0.0051         EPA-TO-15-SIM         ND         A01         1           o-Xylene         1.4         ug/m3         0.056         0.0091         EPA-TO-                                                                                                                                                                                                                                                                                                                                                             | Methylene chloride                |        | ND          | ug/m3    | 0.22                                                 | 0.0085    | EPA-TO-15-SIM | ND   | A01     | 1   |
| Interview         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloroethane         ND         ug/m3         0.11         0.0061         EPA-TO-15-SIM         ND         A01         1           Trichloroethane         ND         ug/m3         0.11         0.011         EPA-TO-15-SIM         ND         A01         1           Trichloroethane         1.4         ug/m3         0.056         0.0063         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloro-1,2,2-trifluoroethane         0.62         ug/m3         0.11         0.0087         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloro-1,2,2-trifluoroethane         0.62         ug/m3         0.022         0.0051         EPA-TO-15-SIM         ND         A01         1           Vinyl chloride         ND         ug/m3         0.022         0.0051         EPA-TO-15-SIM         ND         A01         1           o-Xylene         0.47         ug/m3         0.056         0.0049                                                                                                                                                                                                                                                                                                                                                               | Tetrachloroethene                 |        | ND          | ug/m3    | 0.11                                                 | 0.012     | EPA-TO-15-SIM | ND   | A01     | 1   |
| 1,1,2-Trichloroethane       ND       ug/m3       0.11       0.0061       EPA-TO-15-SIM       ND       A01       1         Trichloroethane       ND       ug/m3       0.11       0.011       EPA-TO-15-SIM       ND       A01       1         Trichloroethane       1.4       ug/m3       0.056       0.0063       EPA-TO-15-SIM       ND       A01       1         1,1,2-Trichloro-1,2,2-trifluoroethane       0.62       ug/m3       0.11       0.0087       EPA-TO-15-SIM       ND       A01       1         1,1,2-Trichloro-1,2,2-trifluoroethane       0.62       ug/m3       0.011       EPA-TO-15-SIM       ND       A01       1         1,1,2-Trichloro-1,2,2-trifluoroethane       0.62       ug/m3       0.022       0.0051       EPA-TO-15-SIM       ND       A01       1         vinyl chloride       ND       ug/m3       0.022       0.0051       EPA-TO-15-SIM       ND       A01       1         p- & m-Xylenes       1.4       ug/m3       0.056       0.0091       EPA-TO-15-SIM       ND       A01       1         o-Xylene       0.47       ug/m3       0.056       0.0049       EPA-TO-15-SIM       ND       A01       1         Total Xylenes       1.8<                                                                                                                                                                                                                                                                                                                                                                                                                          | Toluene                           |        | 1.6         | ug/m3    | 0.11                                                 | 0.0069    | EPA-TO-15-SIM | ND   | A01     | 1   |
| Trichloroethene         ND         ug/m3         0.11         0.011         EPA-TO-15-SIM         ND         A01         1           Trichlorofluoromethane         1.4         ug/m3         0.056         0.0063         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloro-1,2,2-trifluoroethane         0.62         ug/m3         0.11         0.0087         EPA-TO-15-SIM         ND         A01         1           Vinyl chloride         ND         ug/m3         0.022         0.0051         EPA-TO-15-SIM         ND         A01         1           p- & m-Xylenes         1.4         ug/m3         0.026         0.0091         EPA-TO-15-SIM         ND         A01         1           o-Xylene         0.47         ug/m3         0.056         0.0049         EPA-TO-15-SIM         ND         A01         1           Total Xylenes         1.8         ug/m3         0.11         0.014         EPA-TO-15-SIM         ND         A01         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,1-Trichloroethane             |        | ND          | ug/m3    | 0.11                                                 | 0.0061    | EPA-TO-15-SIM | ND   | A01     | 1   |
| Trichlorofluoromethane         1.4         ug/m3         0.056         0.0063         EPA-TO-15-SIM         ND         A01         1           1,1,2-Trichloro-1,2,2-trifluoroethane         0.62         ug/m3         0.11         0.0087         EPA-TO-15-SIM         ND         A01         1           Vinyl chloride         ND         ug/m3         0.022         0.0051         EPA-TO-15-SIM         ND         A01         1           p- & m-Xylenes         1.4         ug/m3         0.056         0.0091         EPA-TO-15-SIM         ND         A01         1           o-Xylene         0.47         ug/m3         0.056         0.0049         EPA-TO-15-SIM         ND         A01         1           Total Xylenes         1.8         ug/m3         0.11         0.014         EPA-TO-15-SIM         ND         A01         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,1,2-Trichloroethane             |        | ND          | ug/m3    | 0.11                                                 | 0.0061    | EPA-TO-15-SIM | ND   | A01     | 1   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane       0.62       ug/m3       0.11       0.0087       EPA-TO-15-SIM       ND       A01       1         Vinyl chloride       ND       ug/m3       0.022       0.0051       EPA-TO-15-SIM       ND       A01       1         p- & m-Xylenes       1.4       ug/m3       0.056       0.0091       EPA-TO-15-SIM       ND       A01       1         o-Xylene       0.47       ug/m3       0.056       0.0049       EPA-TO-15-SIM       ND       A01       1         Total Xylenes       1.8       ug/m3       0.11       0.014       EPA-TO-15-SIM       ND       A01       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Trichloroethene                   |        | ND          | ug/m3    | 0.11                                                 | 0.011     | EPA-TO-15-SIM | ND   | A01     | 1   |
| Vinyl chloride         ND         ug/m3         0.022         0.0051         EPA-TO-15-SIM         ND         A01         1           p- & m-Xylenes         1.4         ug/m3         0.056         0.0091         EPA-TO-15-SIM         ND         A01         1           o-Xylene         0.47         ug/m3         0.056         0.0049         EPA-TO-15-SIM         ND         A01         1           Total Xylenes         1.8         ug/m3         0.11         0.014         EPA-TO-15-SIM         ND         A01         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Trichlorofluoromethane            |        | 1.4         | ug/m3    | 0.056                                                | 0.0063    | EPA-TO-15-SIM | ND   | A01     | 1   |
| p- & m-Xylenes         1.4         ug/m3         0.056         0.0091         EPA-TO-15-SIM         ND         A01         1           o-Xylene         0.47         ug/m3         0.056         0.0049         EPA-TO-15-SIM         ND         A01         1           Total Xylenes         1.8         ug/m3         0.11         0.014         EPA-TO-15-SIM         ND         A01         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,1,2-Trichloro-1,2,2-trifluoroet | hane   | 0.62        | ug/m3    | 0.11                                                 | 0.0087    | EPA-TO-15-SIM | ND   | A01     | 1   |
| o-Xylene         0.47         ug/m3         0.056         0.0049         EPA-TO-15-SIM         ND         A01         1           Total Xylenes         1.8         ug/m3         0.11         0.014         EPA-TO-15-SIM         ND         A01         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vinyl chloride                    |        | ND          | ug/m3    | 0.022                                                | 0.0051    | EPA-TO-15-SIM | ND   | A01     | 1   |
| Total Xylenes         1.8         ug/m3         0.11         0.014         EPA-TO-15-SIM         ND         A01         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p- & m-Xylenes                    |        | 1.4         | ug/m3    | 0.056                                                | 0.0091    | EPA-TO-15-SIM | ND   | A01     | 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o-Xylene                          |        | 0.47        | ug/m3    | 0.056                                                | 0.0049    | EPA-TO-15-SIM | ND   | A01     | 1   |
| 4-Bromofluorobenzene (Surrogate) 105 % 50 - 150 (LCL - UCL) EPA-TO-15-SIM 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Xylenes                     |        | 1.8         | ug/m3    | 0.11                                                 | 0.014     | EPA-TO-15-SIM | ND   | A01     | 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4-Bromofluorobenzene (Surroga     | ate)   | 105         | %        | 50 - 150 (LC                                         | CL - UCL) | EPA-TO-15-SIM |      |         | 1   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report apply to the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

1001425488 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/17/2023 18:06Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | : 2309559-04  | Client San     | Client Sample Name: AA-UST-C-20230511-D, 5/11/2023 12:25:00PM, Client |         |            |          |          |           |  |
|---------------|---------------|----------------|-----------------------------------------------------------------------|---------|------------|----------|----------|-----------|--|
|               |               |                | Run                                                                   |         |            |          | QC       |           |  |
| DCN           | Method        | Prep Date      | Date/Time                                                             | Analyst | Instrument | Dilution | Batch ID |           |  |
| 1             | EPA-TO-15-SIM | 05/15/23 13:13 | 05/15/23 21:31                                                        | RMK     | MS-A1      | 1.110    | B166092  | EPA TO-15 |  |

DCN = Data Continuation Number

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. D: 1001425488 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2309559-04 | Client Sampl | e Name: | AA-UST-C-20230511-D, 5/11/2023 12:25:00PM, Client |     |            |            |              |     |  |
|----------------|------------|--------------|---------|---------------------------------------------------|-----|------------|------------|--------------|-----|--|
| Constituent    |            | Result       | Units   | PQL                                               | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |  |
| Methane (CH4)  |            | 3.3          | ppmv    | 3.3                                               | 3.0 | ASTM-D1946 | ND         |              | 1   |  |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/16/23 16:00 | 05/16/23 22:00 | RMK     | GC-A1      | 1.660    | B166202  | No Prep     |



Reported:05/17/2023 18:06Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 23              | 09559-05 | Client Sampl | e Name: | AA-UST-E     | 0-20230511 | nt            |            |              |     |
|--------------------------------|----------|--------------|---------|--------------|------------|---------------|------------|--------------|-----|
| Constituent                    |          | Result       | Units   | PQL          | MDL        | Method        | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                        |          | 2.8          | ug/m3   | 1.1          | 0.0085     | EPA-TO-15-SIM | ND         | A01,V11      | 1   |
| Benzene                        |          | 0.66         | ug/m3   | 0.056        | 0.0036     | EPA-TO-15-SIM | ND         | A01          | 1   |
| Benzyl chloride                |          | ND           | ug/m3   | 0.56         | 0.0059     | EPA-TO-15-SIM | ND         | A01          | 1   |
| Carbon tetrachloride           |          | ND           | ug/m3   | 0.23         | 0.0071     | EPA-TO-15-SIM | ND         | A01          | 1   |
| Chlorobenzene                  |          | ND           | ug/m3   | 0.11         | 0.0089     | EPA-TO-15-SIM | ND         | A01          | 1   |
| Chloroform                     |          | ND           | ug/m3   | 0.056        | 0.0066     | EPA-TO-15-SIM | ND         | A01          | 1   |
| 1,2-Dibromoethane              |          | ND           | ug/m3   | 0.23         | 0.016      | EPA-TO-15-SIM | ND         | A01          | 1   |
| ,2-Dichlorobenzene             |          | ND           | ug/m3   | 0.23         | 0.012      | EPA-TO-15-SIM | ND         | A01          | 1   |
| ,3-Dichlorobenzene             |          | ND           | ug/m3   | 0.23         | 0.015      | EPA-TO-15-SIM | ND         | A01          | 1   |
| 1,4-Dichlorobenzene            |          | ND           | ug/m3   | 0.23         | 0.018      | EPA-TO-15-SIM | ND         | A01          | 1   |
| Dichlorodifluoromethane        |          | 2.8          | ug/m3   | 0.056        | 0.0059     | EPA-TO-15-SIM | ND         | A01          | 1   |
| 1,1-Dichloroethane             |          | ND           | ug/m3   | 0.056        | 0.0046     | EPA-TO-15-SIM | ND         | A01          | 1   |
| ,2-Dichloroethane              |          | ND           | ug/m3   | 0.11         | 0.0052     | EPA-TO-15-SIM | ND         | A01          | 1   |
| ,1-Dichloroethene              |          | ND           | ug/m3   | 0.056        | 0.0088     | EPA-TO-15-SIM | ND         | A01          | 1   |
| sis-1,2-Dichloroethene         |          | ND           | ug/m3   | 0.056        | 0.0050     | EPA-TO-15-SIM | ND         | A01          | 1   |
| rans-1,2-Dichloroethene        |          | ND           | ug/m3   | 0.056        | 0.0085     | EPA-TO-15-SIM | ND         | A01          | 1   |
| rans-1,3-Dichloropropene       |          | ND           | ug/m3   | 0.056        | 0.015      | EPA-TO-15-SIM | ND         | A01          | 1   |
| ,1-Difluoroethane              |          | 0.42         | ug/m3   | 5.6          | 0.0031     | EPA-TO-15-SIM | ND         | J,A01        | 1   |
| Ethylbenzene                   |          | 0.31         | ug/m3   | 0.056        | 0.019      | EPA-TO-15-SIM | ND         | A01          | 1   |
| Nethylene chloride             |          | ND           | ug/m3   | 0.23         | 0.0087     | EPA-TO-15-SIM | ND         | A01          | 1   |
| etrachloroethene               |          | ND           | ug/m3   | 0.11         | 0.012      | EPA-TO-15-SIM | ND         | A01          | 1   |
| Toluene                        |          | 1.5          | ug/m3   | 0.11         | 0.0070     | EPA-TO-15-SIM | ND         | A01          | 1   |
| 1,1,1-Trichloroethane          |          | ND           | ug/m3   | 0.11         | 0.0062     | EPA-TO-15-SIM | ND         | A01          | 1   |
| ,1,2-Trichloroethane           |          | ND           | ug/m3   | 0.11         | 0.0062     | EPA-TO-15-SIM | ND         | A01          | 1   |
| Trichloroethene                |          | ND           | ug/m3   | 0.11         | 0.011      | EPA-TO-15-SIM | ND         | A01          | 1   |
| Frichlorofluoromethane         |          | 1.4          | ug/m3   | 0.056        | 0.0064     | EPA-TO-15-SIM | ND         | A01          | 1   |
| ,1,2-Trichloro-1,2,2-trifluoro | ethane   | 0.62         | ug/m3   | 0.11         | 0.0088     | EPA-TO-15-SIM | ND         | A01          | 1   |
| /inyl chloride                 |          | ND           | ug/m3   | 0.023        | 0.0052     | EPA-TO-15-SIM | ND         | A01          | 1   |
| o- & m-Xylenes                 |          | 1.2          | ug/m3   | 0.056        | 0.0093     | EPA-TO-15-SIM | ND         | A01          | 1   |
| o-Xylene                       |          | 0.43         | ug/m3   | 0.056        | 0.0050     | EPA-TO-15-SIM | ND         | A01          | 1   |
| fotal Xylenes                  |          | 1.6          | ug/m3   | 0.11         | 0.015      | EPA-TO-15-SIM | ND         | A01          | 1   |
| I-Bromofluorobenzene (Surro    | ogate)   | 112          | %       | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM |            |              | 1   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report apply to the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

1001425488 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/17/2023 18:06Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | : 2309559-05  | Client San     | Client Sample Name: AA-UST-D-20230511, 5/11/2023 12:40:00PM, Client |         |            |          |          |           |  |
|---------------|---------------|----------------|---------------------------------------------------------------------|---------|------------|----------|----------|-----------|--|
|               |               | /              | Run                                                                 |         |            |          | QC       |           |  |
| DCN           | Method        | Prep Date      | Date/Time                                                           | Analyst | Instrument | Dilution | Batch ID |           |  |
| 1             | EPA-TO-15-SIM | 05/15/23 13:13 | 05/15/23 22:11                                                      | RMK     | MS-A1      | 1.130    | B166092  | EPA TO-15 |  |

DCN = Data Continuation Number

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 1001425488 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2309559-05 | Client Sampl | e Name: | AA-UST-E | nt  |            |            |              |     |
|----------------|------------|--------------|---------|----------|-----|------------|------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL | Method     | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 3.5          | ppmv    | 3.2      | 2.9 | ASTM-D1946 | ND         |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/16/23 16:00 | 05/16/23 22:20 | RMK     | GC-A1      | 1.610    | B166202  | No Prep     |



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID: 2              | 309559-06 | Client Sampl | e Name: | AA-CT-20     | 230511, 5/ | 11/2023 11:15:00 | AM, Client |              |     |
|-------------------------------|-----------|--------------|---------|--------------|------------|------------------|------------|--------------|-----|
| Constituent                   |           | Result       | Units   | PQL          | MDL        | Method           | MB<br>Bias | Lab<br>Quals | DCN |
| Acetone                       |           | 2.4          | ug/m3   | 1.1          | 0.0082     | EPA-TO-15-SIM    | ND         | A01,V11      | 1   |
| Benzene                       |           | 0.59         | ug/m3   | 0.055        | 0.0035     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| Benzyl chloride               |           | ND           | ug/m3   | 0.55         | 0.0057     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| Carbon tetrachloride          |           | ND           | ug/m3   | 0.22         | 0.0069     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| Chlorobenzene                 |           | ND           | ug/m3   | 0.11         | 0.0087     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| Chloroform                    |           | ND           | ug/m3   | 0.055        | 0.0064     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| 1,2-Dibromoethane             |           | ND           | ug/m3   | 0.22         | 0.015      | EPA-TO-15-SIM    | ND         | A01          | 1   |
| 1,2-Dichlorobenzene           |           | ND           | ug/m3   | 0.22         | 0.012      | EPA-TO-15-SIM    | ND         | A01          | 1   |
| 1,3-Dichlorobenzene           |           | ND           | ug/m3   | 0.22         | 0.014      | EPA-TO-15-SIM    | ND         | A01          | 1   |
| 1,4-Dichlorobenzene           |           | ND           | ug/m3   | 0.22         | 0.018      | EPA-TO-15-SIM    | ND         | A01          | 1   |
| Dichlorodifluoromethane       |           | 2.7          | ug/m3   | 0.055        | 0.0057     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| 1,1-Dichloroethane            |           | ND           | ug/m3   | 0.055        | 0.0045     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| ,2-Dichloroethane             |           | ND           | ug/m3   | 0.11         | 0.0051     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| ,1-Dichloroethene             |           | ND           | ug/m3   | 0.055        | 0.0086     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| sis-1,2-Dichloroethene        |           | ND           | ug/m3   | 0.055        | 0.0048     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| rans-1,2-Dichloroethene       |           | ND           | ug/m3   | 0.055        | 0.0082     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| rans-1,3-Dichloropropene      |           | ND           | ug/m3   | 0.055        | 0.014      | EPA-TO-15-SIM    | ND         | A01          | 1   |
| I,1-Difluoroethane            |           | 0.47         | ug/m3   | 5.5          | 0.0030     | EPA-TO-15-SIM    | ND         | J,A01        | 1   |
| Ethylbenzene                  |           | 0.26         | ug/m3   | 0.055        | 0.019      | EPA-TO-15-SIM    | ND         | A01          | 1   |
| Methylene chloride            |           | ND           | ug/m3   | 0.22         | 0.0085     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| etrachloroethene              |           | ND           | ug/m3   | 0.11         | 0.012      | EPA-TO-15-SIM    | ND         | A01          | 1   |
| Toluene                       |           | 1.1          | ug/m3   | 0.11         | 0.0068     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| ,1,1-Trichloroethane          |           | ND           | ug/m3   | 0.11         | 0.0060     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| ,1,2-Trichloroethane          |           | ND           | ug/m3   | 0.11         | 0.0060     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| Trichloroethene               |           | ND           | ug/m3   | 0.11         | 0.010      | EPA-TO-15-SIM    | ND         | A01          | 1   |
| Frichlorofluoromethane        |           | 1.4          | ug/m3   | 0.055        | 0.0063     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| I,1,2-Trichloro-1,2,2-trifluo | roethane  | 0.61         | ug/m3   | 0.11         | 0.0086     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| /inyl chloride                |           | ND           | ug/m3   | 0.022        | 0.0051     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| o- & m-Xylenes                |           | 0.94         | ug/m3   | 0.055        | 0.0090     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| o-Xylene                      |           | 0.33         | ug/m3   | 0.055        | 0.0048     | EPA-TO-15-SIM    | ND         | A01          | 1   |
| fotal Xylenes                 |           | 1.3          | ug/m3   | 0.11         | 0.014      | EPA-TO-15-SIM    | ND         | A01          | 1   |
| -Bromofluorobenzene (Su       | rogate)   | 99.7         | %       | 50 - 150 (LC | L - UCL)   | EPA-TO-15-SIM    |            |              | 1   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

1001425488 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/17/2023 18:06Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

| BCL Sample ID | : 2309559-06  | Client Sample Name: AA-CT-20230511, 5/11/2023 11:15:00AM, Client |                |         |            |          |          |           |
|---------------|---------------|------------------------------------------------------------------|----------------|---------|------------|----------|----------|-----------|
|               |               |                                                                  | Run            |         |            |          | QC       |           |
| DCN           | Method        | Prep Date                                                        | Date/Time      | Analyst | Instrument | Dilution | Batch ID |           |
| 1             | EPA-TO-15-SIM | 05/15/23 13:13                                                   | 05/15/23 22:51 | RMK     | MS-A1      | 1.100    | B166092  | EPA TO-15 |

DCN = Data Continuation Number

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 10: 1001425488 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

# Fixed Gases by GC/TCD (ASTM D1946)

| BCL Sample ID: | 2309559-06 | Client Sampl | e Name: | AA-CT-20 | 230511, 5/ | 11/2023 11:15:00 |            |              |     |
|----------------|------------|--------------|---------|----------|------------|------------------|------------|--------------|-----|
| Constituent    |            | Result       | Units   | PQL      | MDL        | Method           | MB<br>Bias | Lab<br>Quals | DCN |
| Methane (CH4)  |            | 4.0          | ppmv    | 3.2      | 2.9        | ASTM-D1946       | ND         |              | 1   |

|     |            |                | Run            |         |            |          |          |             |
|-----|------------|----------------|----------------|---------|------------|----------|----------|-------------|
| DCN | Method     | Prep Date      | Date/Time      | Analyst | Instrument | Dilution | Batch ID | Prep Method |
| 1   | ASTM-D1946 | 05/16/23 16:00 | 05/16/23 22:40 | RMK     | GC-A1      | 1.610    | B166202  | No Prep     |



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

## **Quality Control Report - Method Blank Analysis**

| Constituent                           | QC Sample ID | MB Result | Units | PQL     | MDL           | Lab Quals | Run # |
|---------------------------------------|--------------|-----------|-------|---------|---------------|-----------|-------|
| QC Batch ID: B166092                  |              |           |       |         |               |           |       |
| Acetone                               | B166092-BLK1 | ND        | ug/m3 | 1.0     | 0.0075        |           | 1     |
| Benzene                               | B166092-BLK1 | ND        | ug/m3 | 0.050   | 0.0032        |           | 1     |
| Benzyl chloride                       | B166092-BLK1 | ND        | ug/m3 | 0.50    | 0.0052        |           | 1     |
| Carbon tetrachloride                  | B166092-BLK1 | ND        | ug/m3 | 0.20    | 0.0063        |           | 1     |
| Chlorobenzene                         | B166092-BLK1 | ND        | ug/m3 | 0.10    | 0.0079        |           | 1     |
| Chloroform                            | B166092-BLK1 | ND        | ug/m3 | 0.050   | 0.0058        |           | 1     |
| 1,2-Dibromoethane                     | B166092-BLK1 | ND        | ug/m3 | 0.20    | 0.014         |           | 1     |
| 1,2-Dichlorobenzene                   | B166092-BLK1 | ND        | ug/m3 | 0.20    | 0.011         |           | 1     |
| 1,3-Dichlorobenzene                   | B166092-BLK1 | ND        | ug/m3 | 0.20    | 0.013         |           | 1     |
| 1,4-Dichlorobenzene                   | B166092-BLK1 | ND        | ug/m3 | 0.20    | 0.016         |           | 1     |
| Dichlorodifluoromethane               | B166092-BLK1 | ND        | ug/m3 | 0.050   | 0.0052        |           | 1     |
| 1,1-Dichloroethane                    | B166092-BLK1 | ND        | ug/m3 | 0.050   | 0.0041        |           | 1     |
| 1,2-Dichloroethane                    | B166092-BLK1 | ND        | ug/m3 | 0.10    | 0.0046        |           | 1     |
| 1,1-Dichloroethene                    | B166092-BLK1 | ND        | ug/m3 | 0.050   | 0.0078        |           | 1     |
| cis-1,2-Dichloroethene                | B166092-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 1     |
| trans-1,2-Dichloroethene              | B166092-BLK1 | ND        | ug/m3 | 0.050   | 0.0075        |           | 1     |
| trans-1,3-Dichloropropene             | B166092-BLK1 | ND        | ug/m3 | 0.050   | 0.013         |           | 1     |
| 1,1-Difluoroethane                    | B166092-BLK1 | ND        | ug/m3 | 5.0     | 0.0027        |           | 1     |
| Ethylbenzene                          | B166092-BLK1 | ND        | ug/m3 | 0.050   | 0.017         |           | 1     |
| Methylene chloride                    | B166092-BLK1 | ND        | ug/m3 | 0.20    | 0.0077        |           | 1     |
| Tetrachloroethene                     | B166092-BLK1 | ND        | ug/m3 | 0.10    | 0.011         |           | 1     |
| Toluene                               | B166092-BLK1 | ND        | ug/m3 | 0.10    | 0.0062        |           | 1     |
| 1,1,1-Trichloroethane                 | B166092-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 1     |
| 1,1,2-Trichloroethane                 | B166092-BLK1 | ND        | ug/m3 | 0.10    | 0.0055        |           | 1     |
| Trichloroethene                       | B166092-BLK1 | ND        | ug/m3 | 0.10    | 0.0095        |           | 1     |
| Trichlorofluoromethane                | B166092-BLK1 | ND        | ug/m3 | 0.050   | 0.0057        |           | 1     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | B166092-BLK1 | ND        | ug/m3 | 0.10    | 0.0078        |           | 1     |
| Vinyl chloride                        | B166092-BLK1 | ND        | ug/m3 | 0.020   | 0.0046        |           | 1     |
| p- & m-Xylenes                        | B166092-BLK1 | ND        | ug/m3 | 0.050   | 0.0082        |           | 1     |
| o-Xylene                              | B166092-BLK1 | ND        | ug/m3 | 0.050   | 0.0044        |           | 1     |
| Total Xylenes                         | B166092-BLK1 | ND        | ug/m3 | 0.10    | 0.013         |           | 1     |
| 4-Bromofluorobenzene (Surrogate)      | B166092-BLK1 | 80.1      | %     | 50 - 15 | 0 (LCL - UCL) |           | 1     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

1001425488 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

# Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

#### **Quality Control Report - Method Blank Analysis**

| Run # | QC Sample ID | QC Type | Method        | Prep Date | Run<br>Date Time | Analyst | Instrument | Dilution |
|-------|--------------|---------|---------------|-----------|------------------|---------|------------|----------|
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |
| 1     | B166092-BLK1 | PB      | EPA-TO-15-SIM | 05/15/23  | 05/15/23 18:13   | RMK     | MS-A1      | 1        |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report approved in the sumption of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 11425488 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001425488



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

|                        | • •             | _    | •       |                |       |                     | •   | 0                   | lug 14 |       |       |
|------------------------|-----------------|------|---------|----------------|-------|---------------------|-----|---------------------|--------|-------|-------|
|                        |                 |      |         | • •            |       | _                   |     | Control I           | limits | Lab   |       |
| Constituent            | QC Sample ID    | Туре | Result  | Spike<br>Level | Units | Percent<br>Recovery | RPD | Percent<br>Recovery | RPD    | Quals | Run # |
| QC Batch ID: B166092   |                 |      |         |                |       | -                   |     | -                   |        |       |       |
| Benzene                | <br>B166092-BS1 | LCS  | 0.30120 | 0.31948        | ug/m3 | 94.3                |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.30596 | 0.31948        | ug/m3 | 95.8                | 1.6 | 70 - 130            | 30     |       | 2     |
| Benzyl chloride        | B166092-BS1     | LCS  | 0.56261 | 0.51772        | ug/m3 | 109                 |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.57700 | 0.51772        | ug/m3 | 111                 | 2.5 | 70 - 130            | 30     |       | 2     |
| Carbon tetrachloride   | B166092-BS1     | LCS  | 0.57761 | 0.62913        | ug/m3 | 91.8                |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.59239 | 0.62913        | ug/m3 | 94.2                | 2.5 | 70 - 130            | 30     |       | 2     |
| Chlorobenzene          | B166092-BS1     | LCS  | 0.45060 | 0.46036        | ug/m3 | 97.9                |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.45313 | 0.46036        | ug/m3 | 98.4                | 0.6 | 70 - 130            | 30     |       | 2     |
| Chloroform             | B166092-BS1     | LCS  | 0.47531 | 0.48825        | ug/m3 | 97.4                |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.48484 | 0.48825        | ug/m3 | 99.3                | 2.0 | 70 - 130            | 30     |       | 2     |
| 1,2-Dibromoethane      | B166092-BS1     | LCS  | 0.73692 | 0.76835        | ug/m3 | 95.9                |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.73907 | 0.76835        | ug/m3 | 96.2                | 0.3 | 70 - 130            | 30     |       | 2     |
| 1,2-Dichlorobenzene    | B166092-BS1     | LCS  | 0.64134 | 0.60124        | ug/m3 | 107                 |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.64645 | 0.60124        | ug/m3 | 108                 | 0.8 | 70 - 130            | 30     |       | 2     |
| 1,3-Dichlorobenzene    | B166092-BS1     | LCS  | 0.62913 | 0.60124        | ug/m3 | 105                 |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.64783 | 0.60124        | ug/m3 | 108                 | 2.9 | 70 - 130            | 30     |       | 2     |
| 1,4-Dichlorobenzene    | B166092-BS1     | LCS  | 0.71276 | 0.60124        | ug/m3 | 119                 |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.71204 | 0.60124        | ug/m3 | 118                 | 0.1 | 70 - 130            | 30     |       | 2     |
| 1,1-Dichloroethane     | B166092-BS1     | LCS  | 0.39292 | 0.40474        | ug/m3 | 97.1                |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.39762 | 0.40474        | ug/m3 | 98.2                | 1.2 | 70 - 130            | 30     |       | 2     |
| 1,2-Dichloroethane     | B166092-BS1     | LCS  | 0.39049 | 0.40474        | ug/m3 | 96.5                |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.39159 | 0.40474        | ug/m3 | 96.7                | 0.3 | 70 - 130            | 30     |       | 2     |
| 1,1-Dichloroethene     | B166092-BS1     | LCS  | 0.38064 | 0.39649        | ug/m3 | 96.0                |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.39324 | 0.39649        | ug/m3 | 99.2                | 3.3 | 70 - 130            | 30     |       | 2     |
| cis-1,2-Dichloroethene | B166092-BS1     | LCS  | 0.37568 | 0.39649        | ug/m3 | 94.8                |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.38777 | 0.39649        | ug/m3 | 97.8                | 3.2 | 70 - 130            | 30     |       | 2     |
| Methylene chloride     | B166092-BS1     | LCS  | 0.38576 | 0.34737        | ug/m3 | 111                 |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.38968 | 0.34737        | ug/m3 | 112                 | 1.0 | 70 - 130            | 30     |       | 2     |
| Tetrachloroethene      | B166092-BS1     | LCS  | 0.67208 | 0.67825        | ug/m3 | 99.1                |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.67839 | 0.67825        | ug/m3 | 100                 | 0.9 | 70 - 130            | 30     |       | 2     |
| Toluene                | B166092-BS1     | LCS  | 0.35510 | 0.37684        | ug/m3 | 94.2                |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.36000 | 0.37684        | ug/m3 | 95.5                | 1.4 | 70 - 130            | 30     |       | 2     |
| 1,1,1-Trichloroethane  | B166092-BS1     | LCS  | 0.51910 | 0.54562        | ug/m3 | 95.1                |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.52767 | 0.54562        | ug/m3 | 96.7                | 1.6 | 70 - 130            | 30     |       | 2     |
| 1,1,2-Trichloroethane  | B166092-BS1     | LCS  | 0.52259 | 0.54562        | ug/m3 | 95.8                |     | 70 - 130            |        |       | 1     |
|                        | B166092-BSD1    | LCSD | 0.52292 | 0.54562        | ug/m3 | 95.8                | 0.1 | 70 - 130            | 30     |       | 2     |
|                        |                 |      |         |                |       |                     |     |                     |        |       |       |

## **Quality Control Report - Laboratory Control Sample**

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 1425488 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report ID: 1001425488



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

|                                  |              |      |         |         |       | Control Limits |     |          |     |       |       |  |
|----------------------------------|--------------|------|---------|---------|-------|----------------|-----|----------|-----|-------|-------|--|
|                                  |              | _    |         | Spike   |       | Percent        |     | Percent  |     | Lab   | _ "   |  |
| Constituent                      | QC Sample ID | Туре | Result  | Level   | Units | Recovery       | RPD | Recovery | RPD | Quals | Run # |  |
| QC Batch ID: B166092             |              |      |         |         |       |                |     |          |     |       |       |  |
| Trichloroethene                  | B166092-BS1  | LCS  | 0.51174 | 0.53737 | ug/m3 | 95.2           |     | 70 - 130 |     |       | 1     |  |
|                                  | B166092-BSD1 | LCSD | 0.51163 | 0.53737 | ug/m3 | 95.2           | 0.0 | 70 - 130 | 30  |       | 2     |  |
| Vinyl chloride                   | B166092-BS1  | LCS  | 0.25953 | 0.25562 | ug/m3 | 102            |     | 70 - 130 |     |       | 1     |  |
|                                  | B166092-BSD1 | LCSD | 0.27688 | 0.25562 | ug/m3 | 108            | 6.5 | 70 - 130 | 30  |       | 2     |  |
| p- & m-Xylenes                   | B166092-BS1  | LCS  | 0.83074 | 0.86843 | ug/m3 | 95.7           |     | 70 - 130 |     |       | 1     |  |
|                                  | B166092-BSD1 | LCSD | 0.82713 | 0.86843 | ug/m3 | 95.2           | 0.4 | 70 - 130 | 30  |       | 2     |  |
| o-Xylene                         | B166092-BS1  | LCS  | 0.41485 | 0.43421 | ug/m3 | 95.5           |     | 70 - 130 |     |       | 1     |  |
|                                  | B166092-BSD1 | LCSD | 0.41307 | 0.43421 | ug/m3 | 95.1           | 0.4 | 70 - 130 | 30  |       | 2     |  |
| Total Xylenes                    | B166092-BS1  | LCS  | 1.2456  | 1.3026  | ug/m3 | 95.6           |     | 70 - 130 |     |       | 1     |  |
|                                  | B166092-BSD1 | LCSD | 1.2402  | 1.3026  | ug/m3 | 95.2           | 0.4 | 70 - 130 | 30  |       | 2     |  |
| 4-Bromofluorobenzene (Surrogate) | B166092-BS1  | LCS  | 3.65    | 3.58    | ug/m3 | 102            |     | 50 - 150 |     |       | 1     |  |
|                                  | B166092-BSD1 | LCSD | 3.65    | 3.58    | ug/m3 | 102            | 0.0 | 50 - 150 |     |       | 2     |  |

## **Quality Control Report - Laboratory Control Sample**



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

## **Quality Control Report - Laboratory Control Sample**

| Run # | QC Sample ID | QC Type | Method        | Prep Date | Run<br>Date Time | Analyst | Instrument     | Dilution |  |
|-------|--------------|---------|---------------|-----------|------------------|---------|----------------|----------|--|
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1<br>MS-A1 | 1        |  |
|       |              |         |               |           |                  |         |                |          |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 1     | B166092-BS1  | LCS     | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:11   | RMK     | MS-A1          | 1        |  |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43   | RMK     | MS-A1          | 1        |  |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43   | RMK     | MS-A1          | 1        |  |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43   | RMK     | MS-A1          | 1        |  |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43   | RMK     | MS-A1          | 1        |  |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43   | RMK     | MS-A1          | 1        |  |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43   | RMK     | MS-A1          | 1        |  |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43   | RMK     | MS-A1          | 1        |  |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43   | RMK     | MS-A1          | 1        |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, genaration, detachment or third party interpretation. 11425488 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com



Reported:05/17/2023 18:06Project:City TerraceProject Number:36908Project Manager:April McGuire

## Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

## **Quality Control Report - Laboratory Control Sample**

|       |              |         |               |           | Run            |         |            |          |
|-------|--------------|---------|---------------|-----------|----------------|---------|------------|----------|
| Run # | QC Sample ID | QC Type | Method        | Prep Date | Date Time      | Analyst | Instrument | Dilution |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43 | RMK     | MS-A1      | 1        |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43 | RMK     | MS-A1      | 1        |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43 | RMK     | MS-A1      | 1        |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43 | RMK     | MS-A1      | 1        |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43 | RMK     | MS-A1      | 1        |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43 | RMK     | MS-A1      | 1        |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43 | RMK     | MS-A1      | 1        |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43 | RMK     | MS-A1      | 1        |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43 | RMK     | MS-A1      | 1        |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43 | RMK     | MS-A1      | 1        |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43 | RMK     | MS-A1      | 1        |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43 | RMK     | MS-A1      | 1        |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43 | RMK     | MS-A1      | 1        |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43 | RMK     | MS-A1      | 1        |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43 | RMK     | MS-A1      | 1        |
| 2     | B166092-BSD1 | LCSD    | EPA-TO-15-SIM | 05/15/23  | 05/15/23 17:43 | RMK     | MS-A1      | 1        |



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

## **Quality Control Report - Method Blank Analysis**

| Constituent            |                |         | QC Sample ID | MB Result | Units            | PC      | ΣL Ι       | MDL     | Lab Quals | Run # |
|------------------------|----------------|---------|--------------|-----------|------------------|---------|------------|---------|-----------|-------|
| QC Bat<br>Methane (CH4 | ch ID: B166202 |         | B166202-BLK1 | ND        | ppmv             | 2       | 0          | 1.8     |           | 1     |
|                        | .,             |         |              |           |                  |         |            |         |           |       |
| Run #                  | QC Sample ID   | QC Type | Method       | Prep Date | Run<br>Date Time | Analyst | Instrument | Dilutio | n         |       |
| 1                      | B166202-BLK1   | PB      | ASTM-D1946   | 05/16/23  | 05/16/23 20:39   | RMK     | GC-A1      | 1       | •         |       |



Reported:05/17/202318:06Project:City TerraceProject Number:36908Project Manager:April McGuire

## Fixed Gases by GC/TCD (ASTM D1946)

## **Quality Control Report - Laboratory Control Sample**

|                      |              |      |        |                |       |                     |     | <b>Control</b>      | <u>Limits</u> |              |       |
|----------------------|--------------|------|--------|----------------|-------|---------------------|-----|---------------------|---------------|--------------|-------|
| Constituent          | QC Sample ID | Туре | Result | Spike<br>Level | Units | Percent<br>Recovery | RPD | Percent<br>Recovery | RPD           | Lab<br>Quals | Run # |
| QC Batch ID: B166202 |              |      |        |                |       |                     |     |                     |               |              |       |
| Methane (CH4)        | B166202-BS1  | LCS  | 21574  | 18000          | ppmv  | 120                 |     | 70 - 130            |               |              | 1     |
|                      | B166202-BSD1 | LCSD | 21352  | 18000          | ppmv  | 119                 | 1.0 | 70 - 130            | 30            |              | 2     |
|                      |              | LOOD | 21002  |                | Run   |                     | 1.0 |                     |               |              |       |

|       |              |         |            |           | Run            |         |            |          |  |
|-------|--------------|---------|------------|-----------|----------------|---------|------------|----------|--|
| Run # | QC Sample ID | QC Type | Method     | Prep Date | Date Time      | Analyst | Instrument | Dilution |  |
| 1     | B166202-BS1  | LCS     | ASTM-D1946 | 05/16/23  | 05/16/23 19:58 | RMK     | GC-A1      | 1        |  |
| 2     | B166202-BSD1 | LCSD    | ASTM-D1946 | 05/16/23  | 05/16/23 20:18 | RMK     | GC-A1      | 1        |  |



# Reported:05/17/2023 18:06Project:City TerraceProject Number:36908Project Manager:April McGuire

#### **Notes And Definitions**

| J   | Estimated Value (CLP Flag) |
|-----|----------------------------|
| MDL | Method Detection Limit     |
| ND  | Analyte Not Detected       |

- PQL Practical Quantitation Limit
- A01 Detection and quantitation limits are raised due to sample dilution.
- V11 The Continuing Calibration Verification (CCV) recovery was not within established control limits.

Air Quality Attribution Study Report City Terrace, East Los Angeles, California APPENDIX B

Student's t-Test Calculations

#### APPENDIX B STUDENT'S t-TEST CALCULATIONS

This appendix has been prepared to document the procedures that were used to determine whether mean average benzene values between ambient/outdoor air data sets are significantly different from one another. A series of statistical analyses were carried out in Microsoft Excel using the Student's t-Test functionality (*T.TEST*), which calculates the probability (p-value) associated with a Student's t-Test to determine whether two groups of samples are likely to have come from the same two underlying populations that have the same mean. The Excel function returns a p-value which is compared against a conservative reference significance value of 0.01 to determine if there is a significant difference between the two groups of samples. If the calculated Student's t-Test p-value is less than 0.01, there is a significant difference between the two groups of samples, and vice versa if the calculated p-value is greater than 0.01.

#### SYNTAX

Each calculation was performed using the following syntax in Microsoft Excel:

=T.TEST(array1,array2,2,2)

Where array1 = the first data set, array 2 = the second data set, the first '2' = the number of distribution tails (two), and the second '2' = the type of t-Test being performed (two-sample equal variance [homoscedastic]). A two-tailed test is used because a significant difference between two groups of samples can occur in either direction (i.e., one group can have a significantly different mean that is greater than, or less than, the other group). A two-sample equal variance t-Test is performed because the sample groups being compared are not paired (i.e., correlated) and have similar variances within each group.

#### **GROUPS OF DATA**

Sample groups were arranged according to their respective study (i.e., Peak/Minimum Traffic Study, Lateral Variation Study, Gasoline Service Station / Fueling Facilities Study) and/or location (i.e., Freeway (within 0.125 miles), Non-Highway (greater than 0.125 miles), City Terrace Community (including samples from Roux's *Soil Gas and Indoor Air Sampling Report*, dated June 2023<sup>1</sup>), Greater Los Angeles Air Basin (data from AQMD's Mates V Air Monitoring Dashboard<sup>2</sup>).

No duplicates were included in any analysis. Except for comparisons within the Peak/Minimum Traffic Study, in which ambient/outdoor air samples were collected over three-hour intervals, all ambient/outdoor air sample groups for the Lateral Variation Study and Gasoline Service Station / Fueling Facilities Study, as well as the City Terrace Community sample group, were collected over 24-hour intervals. Data from the April 7 Peak/Minimum Traffic Study were considered outliers and were excluded from the Student t-Test calculation, where applicable

The Greater Los Angeles Air Basin ambient/outdoor air sample data represents the average benzene concentrations recorded from 2018 – 2019 at the following locations: Burbank, Central LA, Compton, Huntington Park, Inland Valley San Bernadino, Long Beach, Pico Riviera, Rubidoux, and West Long Beach.

<sup>&</sup>lt;sup>1</sup> Roux. Soil Gas and Indoor Air Sampling Report: City Terrace Community. June 2023.

<sup>&</sup>lt;sup>2</sup> http://www.aqmd.gov/home/air-quality/air-quality-studies/health-studies/mates-v/mates-v-air-monitoring-dashboard

#### COMPARISONS

Student t-Test Excel calculations were performed for the following sample groups:

- City Terrace Community (n=24) vs. Greater Los Angeles Air Basin (n=9)
- Peak/Minimum Traffic Study (3-hour collection time)
  - Freeway Adjacent Peak Traffic (n=6) vs. Freeway Adjacent Minimum Traffic (n=6)
  - Non-Freeway Adjacent Peak Traffic (n=2) vs. Non-Freeway Adjacent Minimum Traffic (n=2)
- Lateral Variation Study
  - Lateral Variation Study (n=29) vs. Greater Los Angeles Air Basin (n=9)
  - Freeway Adjacent (n=8) vs. City Terrace Community (n=24)
  - Non-Freeway Adjacent (n=21) vs. City Terrace Community (n=24)
- Gasoline Service Station / Fueling Facilities Study
  - Fueling Sites A and B (n=2) vs. Freeway Adjacent (n=8)
  - Fueling Sites C and D (n=2) vs. City Terrace Community (n=24)

#### RESULTS

The following sample groups were calculated to be **significantly different** from each other (i.e., the calculated Student t-Test p-value was less than 0.01):

- City Terrace Community vs. Greater Los Angeles Air Basin
  - o p-value = 0.0016
- Freeway Adjacent Peak Traffic vs. Freeway Adjacent Minimum Traffic
  - o p-value = 2.2 x 10<sup>-5</sup>
- Non-Freeway Adjacent Peak Traffic vs. Non-Freeway Adjacent Minimum Traffic
  - o p-value = 0.005
- Lateral Variation Freeway Adjacent vs. City Terrace Community
  - p-value = 6.8 x 10<sup>-5</sup>

The following sample groups were calculated to **not be significantly different** from each other (i.e., the calculated Student t-Test p-value was greater than 0.01):

- Lateral Variation Study vs. Greater Los Angeles Air Basin
  - p-value = 0.97
- Lateral Variation Non-Freeway Adjacent vs. City Terrace Community
  - o p-value = 0.02
- Gasoline Service Station / Fueling Facilities Study Fueling Sites A and B vs. Freeway Adjacent
  - o p-value = 0.72
- Gasoline Service Station / Fueling Facilities Study Fueling Sites C and D vs. City Terrace
   Community
  - p-value = 0.93