INFLUENZA (H1N1) UPDATE

Elizabeth Bancroft, MD, SM
Acute Communicable Disease Control Program
Los Angeles County Department of Public Health

ebancroft@ph.lacounty.gov

August 28 and September 4, 2009
Roadmap

- Background of Influenza
- Molecular characteristics H1N1
- Transmission
- H1N1 epidemiology in Southern California
- Diagnosis and Reporting
- Treatment and prophylaxis
- Public Health Control Measures
BACKGROUND: HUMAN INFLUENZA

- Acute febrile respiratory illness (AFRI)
 - Symptoms, signs may differ by age
- Annual epidemics occur in fall and winter
- Rates of serious illness and death due to influenza: increased for \(\geq 65 \) yrs, children <2 yrs, and persons w/ underlying risk facts
- Annually estimated 36,000 deaths and 226,000 hospitalizations
- Types A and B cause most disease
KEY INFLUENZA VIRAL FEATURES

Surface proteins (major antigens)

- **Hemagglutinin (HA)**
 - Site of attachment to host cells
 - Antibody to HA is protective

- **Neuraminidase (NA)**
 - Helps to release virions from cells
 - Antibody to NA can help modify disease severity
INFLUENZA A VIRUSES

- Infect multiple species
 - Humans
 - Birds (wild birds, domestic poultry)
 - Pigs (wild, domesticated)
 - Other animals: horses, dogs, marine mammals (seals, whales)

- Subtypes based on surface glycoproteins (HA and NA)
 - 16 HA, 9 NA
 - Currently 3 human influenza A virus subtypes:
 - H1 (H1N1, H1N2)
 - H3 (H3N2)

- Genetic Variation in HA and NA
 - Cause epidemics and pandemics
INFLUENZA A VIRUSES: ANTIGENIC “DRIFT”

- Antigenic “drift”: Point mutations in the hemagglutinin gene cause minor antigenic changes to HA
 - Continuous process
- Antigenic “drift” causes seasonal epidemics
 - May be limited cross immunity
 - Need new vaccine every year
Antigenic “shift”: Emergence of a novel human influenza A virus subtype (new HA subtype +/- NA) through:

✓ Genetic reassortment (human and animal viruses) (Novel H1N1)

✓ Direct animal (poultry) to human transmission (H5N1)
DEFINITION OF PANDEMIC

- Isolation from humans of a novel influenza A virus
- Little or no immunity in the population
- Demonstrated ability of the virus to replicate and cause disease
- Efficient person to person transmission
- Found around the world
INFLUENZA PANDEMICS
20th Century

1918: “Spanish Flu”
A(H1N1)
20-40 million deaths worldwide
675,000 US deaths

1957: “Asian Flu”
A(H2N2)
1-4 million deaths
70,000 US deaths

1968: “Hong Kong Flu”
A(H3N2)
1-4 million deaths
34,000 US deaths
Pandemic (H1N1) 2009

- Novel Influenza A (H1N1) Declarations
 - WHO: Jump from Pandemic Phase 3 to phase 5 by 4/29/2009
Roadmap

- Background of Influenza
- **Molecular characteristics H1N1**
- Transmission
- H1N1 epidemiology in Southern California
- Diagnosis, treatment and prophylaxis
- Public Health Control Measures
New Subtype

- Novel H1N1 Influenza A Virus is a new subtype not previously found in humans/swine.
- Genomic analysis of A (H1N1) segments from re-assortment of 4 different Influenza A:
 - North American human H3N2
 - North American avian
 - North American swine and Eurasian swine
History of Reassortment Events in the Evolution of the 2009 Influenza A (H1N1) Virus

Appears that people born before 1957 have some protection (MMWR, May 22, 2009)

- 1/3 adults >60 years have cross reactive antibody
 - Possibly due to exposure to H1N1 that was circulating before H3 took over
- No immunity for younger individuals

Reflected in rare occurrence of illness in those over 65 years
Roadmap

- Background of Influenza
- Molecular characteristics H1N1
- **Clinical/ Transmission**
 - H1N1 epidemiology in Southern California
- Diagnosis, treatment and prophylaxis
- Public Health Control Measures
Influenza Virus Transmission

Aerosol/Droplet

Fomites
TRANSMISSION

- Spread by respiratory droplets: person-to-person, direct contact
 - Requires close contact btw source and recipient, travel < 1 meter
 - Rarely respiratory
- Ferret study showed Novel H1N1 more direct contact, less droplet than seasonal flu (Science June 09 [Maines])
Transmission

- Short incubation period, usually 1-4 days
- Highly contagious; infectious period:
 - Adults: 1 day prior to symptoms thru 5 - 10 days post illness
 - Children: several days before onset to ≥10 days
 - Generally shed virus longer than adults due to lack of immunity
 - Immune compromised: can shed virus for weeks to months
- Transmission similar for novel H1N1
 - 90% of household transmission within 5 days
Children Play an Important Role in the Transmission of Influenza

Roadmap

► Background of Influenza
► Molecular characteristics H1N1
► Transmission
► H1N1 epidemiology in Southern California
► Diagnosis, treatment and prophylaxis
► Public Health Control Measures
Swine Influenza A (H1N1) Infection in Two Children — Southern California, March–April 2009

INSIDE
393 Malignant Mesothelioma Mortality — United States, 1999–2005
396 HIV Infection — Guangdong Province, China, 1997–2007
400 Swine Influenza A (H1N1) Infection in Two Children — Southern California, March–April 2009
402 Notices to Readers
405 QuickStats
Epi Curve of Severe Influenza in LAC as of 8/26/2009
Not Just a Testing Artifact

Figure 1: Total Positive Flu and % Positive Flu by Week

- Number
- Percent Positive

- 2008-2009 Flu
- 2008-2009 % + Flu

Oct, Nov, Dec, Jan, Feb, Mar, Apr, May, Jun, Jul, Aug
Incidence of Hosp/ Deaths by Age in California due to H1N1

Table 2. Total number of hospitalized and/or fatal cases reported and incidence rate, by age group, of pandemic (H1N1) 2009 in California, April 3–August 25, 2009

<table>
<thead>
<tr>
<th>Age category, in years</th>
<th>Number of cases</th>
<th>Cumulative number of cases</th>
<th>Incidence per 100,000 population</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>92</td>
<td>92</td>
<td>16.15</td>
</tr>
<tr>
<td>1-4</td>
<td>118</td>
<td>210</td>
<td>5.34</td>
</tr>
<tr>
<td>5-18</td>
<td>283</td>
<td>493</td>
<td>3.74</td>
</tr>
<tr>
<td>19-24</td>
<td>183</td>
<td>676</td>
<td>5.28</td>
</tr>
<tr>
<td>25-35</td>
<td>260</td>
<td>936</td>
<td>4.42</td>
</tr>
<tr>
<td>36-49</td>
<td>237</td>
<td>1173</td>
<td>2.96</td>
</tr>
<tr>
<td>50-64</td>
<td>269</td>
<td>1442</td>
<td>4.02</td>
</tr>
<tr>
<td>65+</td>
<td>86</td>
<td>1528</td>
<td>1.97</td>
</tr>
<tr>
<td>ALL AGES</td>
<td>1528</td>
<td></td>
<td>3.94</td>
</tr>
</tbody>
</table>

Includes the following individuals: (1) non-fatal hospitalized cases, (2) fatal hospitalized cases, (3) fatal non-hospitalized cases.
Risk Factors for Severe Illness with H1N1

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Cardiac</th>
<th>Pulmonary</th>
<th>Metabolic Disorder</th>
<th>Developmental Delay</th>
<th>Immunosupression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaths</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><18</td>
<td>20%</td>
<td>0%</td>
<td>0%</td>
<td>80%</td>
<td>40%</td>
</tr>
<tr>
<td>18+</td>
<td>31%</td>
<td>24%</td>
<td>31%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>All Ages</td>
<td>29%</td>
<td>21%</td>
<td>26%</td>
<td>21%</td>
<td>15%</td>
</tr>
<tr>
<td>ICU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><18</td>
<td>21%</td>
<td>47%</td>
<td>5%</td>
<td>37%</td>
<td>0%</td>
</tr>
<tr>
<td>18+</td>
<td>8%</td>
<td>19%</td>
<td>22%</td>
<td>3%</td>
<td>11%</td>
</tr>
<tr>
<td>All Ages</td>
<td>13%</td>
<td>29%</td>
<td>16%</td>
<td>15%</td>
<td>11%</td>
</tr>
<tr>
<td>Hospitalized</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><18</td>
<td>3%</td>
<td>29%</td>
<td>8%</td>
<td>12%</td>
<td>8%</td>
</tr>
<tr>
<td>18+</td>
<td>14%</td>
<td>16%</td>
<td>16%</td>
<td>4%</td>
<td>11%</td>
</tr>
<tr>
<td>All Ages</td>
<td>9%</td>
<td>22%</td>
<td>12%</td>
<td>8%</td>
<td>9%</td>
</tr>
</tbody>
</table>
Other Clinical Observations

- 14 pregnant women: 4 in ICU and 2 died
- Kids:
 - Asthma
 - Developmental conditions
- Adults
 - Diabetes, BMI, lung disease
- Many seen and treated with antibiotics days before admission to hospital
- Very little secondary bacterial infections
- Some nosocomial outbreaks
ICU/Deaths by BMI

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>36</td>
</tr>
<tr>
<td>Median</td>
<td>33</td>
</tr>
<tr>
<td>Range</td>
<td>19-77</td>
</tr>
</tbody>
</table>

14% of adult deaths with obesity as only risk factor
Epidemiologic Characteristics of Novel H1N1

- Mortality rates consistent with seasonal influenza
- Majority of cases <18 years
- Late season peak in cases
 - 99% or more of current isolates novel H1N1
- Not much hospitalization in >60 yrs
Roadmap

- Background of Influenza
- Molecular characteristics H1N1
- Epidemiology/Transmission
- H1N1 epidemiology in Southern California
- Diagnosis and Reporting
- Treatment and prophylaxis
- Public Health Control Measures
Nasopharyngeal aspirates or swab is the diagnostic specimen of choice.

Serologic testing not recommended to detect evidence of human influenza or management of acute illness.

Specimen collection:
- Obtain specimen within 5 days of symptom onset.
- Refrigerate specimen and test for flu ASAP.
- Note: immunocompromised may shed virus for weeks to months.
Diagnostic Specimens (2)

- RT-PCR testing—most sensitive and specific of testing modalities, results within 4-6 hrs
 - Public Health Laboratory

- Viral Isolation—standard culture and shell vial culture—at least a few days

- Commercial Rapid flu tests—ready in 10-30 minutes, variable sensitivity and specificity depending on test kit and lab experience
SENSITIVITY* OF RAPID ANTIGEN DETECTION TESTS

<table>
<thead>
<tr>
<th>2008-9 Seasonal Influenza type</th>
<th>BinaxNOW A&B</th>
<th>Quidel Quickvue</th>
<th>Directigen EZ Flu</th>
</tr>
</thead>
<tbody>
<tr>
<td>A H3N2</td>
<td>60-80</td>
<td>60-80</td>
<td>60-80</td>
</tr>
<tr>
<td>A H1N1</td>
<td>80-83</td>
<td>80-83</td>
<td>80-83</td>
</tr>
<tr>
<td>Novel H1N1 High titer</td>
<td>89-100</td>
<td>89-100</td>
<td>89-100</td>
</tr>
<tr>
<td>Novel H1N1 Low Titer</td>
<td>40</td>
<td>69</td>
<td>49</td>
</tr>
</tbody>
</table>

*Using RT-PCR as the gold standard MMWR 2009 58(30)
Original Priorities for Laboratory testing of Novel H1N1

- Early in outbreak - wider testing of ILI illness - late April through mid-May
 - Hospitalized cases
 - Non-hospitalized cases
 - School Outbreaks
 - Recent travel to Mexico
 - Elderly
 - Immunocompromised
 - Pregnant women
 - Healthcare workers
 - Recent contact with suspect/known Novel H1N1
Current Priorities for Testing for Novel H1N1

- Influenza-like illness (fever $\geq 100^\circ$F and cough/or sore throat)
- One of the following:
 - ICU admission
 - Death
 - Outbreak
- For individual cases: must get pre-approval from ACDC prior to submission
Reporting Requirements

- All outbreaks are reportable
- All hospitalizations in the ICU or deaths due to ANY influenza are reportable as individual cases
- Aggregate reporting, by age group, for all hospitalizations, ICU admissions, and deaths
 - Include total count of pregnant women and healthcare workers
Roadmap

- Background of Influenza
- Molecular characteristics H1N1
- Epidemiology/Transmission
- H1N1 epidemiology in Southern California
- Diagnosis and Reporting
- Treatment and prophylaxis
- Public Health Control Measures
ANTI VI RALS: ADAMANTANES AND NEURAMINIDASE INHIBITORS
Treatment of Influenza

- Treatment Recommended
 - All hospitalized patients with confirmed, probable or suspect Influenza
 - Patients at high risk for influenza complications
 - Consider doubling dose for obese patients

- Antivirals should be started w/in 48 hrs
 - Hospitalized patients may still benefit even > 48 hrs
High Risk Groups for Treatment of Influenza

- High-risk groups for influenza complications:
 - Children <5 years
 - Children <2 years highest risk for hospitalization, death, complications
 - Adults ≥ 65 years
 - Immunosuppressed persons - medications, HIV
 - Pregnant women
 - Persons <19 yrs on long-term ASA Rx
 - Resident in nursing home/chronic care facilities
Treatment of Influenza

- Pregnant women
 - No clinical studies have been conducted to assess safely safety of neuraminidase inhibitors
 - Pregnancy should not be considered a contraindication to oseltamivir or zanamivir

- Children under 1 year of age
 - Oseltamivir is not licensed for children <1 year
 - Limited safety data on treatment for <1 year suggest severe adverse events are rare
 - Emergency use authorization for Tamiflu was granted due to high rates of morbidity and mortality
Treatment of Influenza

<table>
<thead>
<tr>
<th></th>
<th>Adamantanes</th>
<th>Tamiflu®</th>
<th>Relenza ®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seasonal H1N1</td>
<td>S</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>Seasonal H3N2</td>
<td>R</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Influenza B</td>
<td>R</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Novel H1N1</td>
<td>R</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>
PROPHYLAXIS GUIDANCE

- Healthcare workers who provided care to a confirmed influenza patient AND did not use proper PPE
 - Relenza for pregnant contacts
- Asymptomatic household and other close contacts of a confirmed influenza patient who are at high risk for complications
- In an outbreak setting in a closed facility (SNF, LTC)
Swine Flu!
Bacon's Revenge
Roadmap

- Background of Influenza
- Molecular characteristics H1N1
- Epidemiology/Transmission
- H1N1 epidemiology in Southern California
- Diagnosis and reporting
- Treatment and prophylaxis
- Public Health Control Measures
Impacts on Influenza Pandemic on Health Services

- Likely to place great pressure on health and social services
- Increased numbers of patients requiring treatment
- Depletion of the workforce due to illness and other disruption

[www.dh.gov.uk/pandemicflu]
CHALLENGES TO MAINTAINING QUALITY MEDICAL CARE

- Ability to effectively triage patients
- Ability to care for ill outpatients
 - Delivery of medical care, medications, and food
- High demand for inpatient services
 - Estimated >25% increase in demand for inpatient beds, ICU beds, & ventilators for a mild pandemic
 - Staff absenteeism
 - Limited availability of critical resources
- Surge capacity for inpatient care
IMPACT ON SCHOOLS AND SERVICES

- Likely to spread rapidly in schools and other closed communities
- Impact on all services including police, fire, the military, duel supply, food production, distribution and transport, prisons, education and business

www.dh.gov.uk/pandemicflu
Control Activities

- Prevention
- Surveillance
- Improve medical response
- Outbreak control
Prevention

- Vaccines!
 - Seasonal influenza
 - H1N1 monovalent
 - Pneumococcal

- Community Mitigation Messaging
 - Hands
 - Noses/mouths
 - When to see the doctor/when to stay home
Community Mitigation

- Self-isolation encouraged
 - Masks for HH contacts
 - Quarantine for contacts not practical
- Business preparedness
 - Discourage “presenteeism”
 - Develop contingency plans/telecommute
- Community education
Self-Isolation

- People with novel H1N1 flu who are cared for at home should:
 - Wear a facemask - if available and tolerable - when sharing common spaces with other household members. This is especially important if other household members are at high risk for complications from influenza.
 - Stay at home for at least 24 hours after resolution of fever off anti-pyretics

http://www.cdc.gov/h1n1flu/guidance_homecare.htm
WARNING
MUMPS
NOTICE

WARNING
MEASLES
NOTICE

WARNING
CHICKEN POX
NOTICE
A newspaper photograph published Oct. 17, 1918, demonstrated health officials’ suggestion on how to kiss during the epidemic.
Surveillance

Goal: provide accurate, useful, and timely information about the effects of Influenza on residents in Los Angeles County. Results in Influenza Watch.

- Individual cases/reportable diseases
- Syndromic
- Outbreaks
- Relational (IZ versus DZ)
Improve Medical Response

- Identify risk groups
- Treatment recommendations
- Diagnostic recommendations
- Assist with infection control recommendations and requirements
- Provide SNS supplies
Outbreaks!
Conclusions

- We are already in a pandemic
- Severity unknown
 - Absolute # of cases likely to be higher than "regular" season
- Goal: reduce morbidity and mortality, not transmission
- Community mitigation will only go so far
- Prompt Public Health response-vaccines and outbreak control will save lives
Questions?